Properties

Label 45.45.206...625.1
Degree $45$
Signature $[45, 0]$
Discriminant $2.069\times 10^{117}$
Root discriminant \(404.59\)
Ramified primes $3,5,19$
Class number not computed
Class group not computed
Galois group $C_3\times C_{15}$ (as 45T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251)
 
gp: K = bnfinit(y^45 - 15*y^44 - 120*y^43 + 2785*y^42 + 2040*y^41 - 222342*y^40 + 420425*y^39 + 10024590*y^38 - 35069730*y^37 - 280556895*y^36 + 1389459441*y^35 + 4980489270*y^34 - 34327919505*y^33 - 52485204525*y^32 + 576080544270*y^31 + 196092367854*y^30 - 6820772763030*y^29 + 3051952728270*y^28 + 57922300812880*y^27 - 59937846525180*y^26 - 353495076875202*y^25 + 542694665981220*y^24 + 1531071286376460*y^23 - 3131712122030760*y^22 - 4545064586341055*y^21 + 12339167509476885*y^20 + 8461213880546430*y^19 - 33709107574234355*y^18 - 6968642817313350*y^17 + 63373889569191960*y^16 - 7076452922900098*y^15 - 80218608988132905*y^14 + 26470314281644410*y^13 + 66243722166245240*y^12 - 32060240741785995*y^11 - 34356066621763764*y^10 + 20781515138515650*y^9 + 10477766738441505*y^8 - 7675031336820660*y^7 - 1594722107742745*y^6 + 1559444254090284*y^5 + 49643486026125*y^4 - 150881459933485*y^3 + 10931860799430*y^2 + 4297070637735*y - 401780151251, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251)
 

\( x^{45} - 15 x^{44} - 120 x^{43} + 2785 x^{42} + 2040 x^{41} - 222342 x^{40} + 420425 x^{39} + \cdots - 401780151251 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $45$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[45, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(206\!\cdots\!625\) \(\medspace = 3^{60}\cdot 5^{72}\cdot 19^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(404.59\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{4/3}5^{8/5}19^{2/3}\approx 404.59087212305565$
Ramified primes:   \(3\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $45$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4275=3^{2}\cdot 5^{2}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{4275}(4096,·)$, $\chi_{4275}(1,·)$, $\chi_{4275}(2566,·)$, $\chi_{4275}(391,·)$, $\chi_{4275}(1546,·)$, $\chi_{4275}(2956,·)$, $\chi_{4275}(4111,·)$, $\chi_{4275}(1426,·)$, $\chi_{4275}(406,·)$, $\chi_{4275}(3991,·)$, $\chi_{4275}(1816,·)$, $\chi_{4275}(2971,·)$, $\chi_{4275}(286,·)$, $\chi_{4275}(2851,·)$, $\chi_{4275}(676,·)$, $\chi_{4275}(1831,·)$, $\chi_{4275}(3241,·)$, $\chi_{4275}(1711,·)$, $\chi_{4275}(691,·)$, $\chi_{4275}(2101,·)$, $\chi_{4275}(3256,·)$, $\chi_{4275}(571,·)$, $\chi_{4275}(3136,·)$, $\chi_{4275}(961,·)$, $\chi_{4275}(2116,·)$, $\chi_{4275}(3526,·)$, $\chi_{4275}(1996,·)$, $\chi_{4275}(976,·)$, $\chi_{4275}(2386,·)$, $\chi_{4275}(3541,·)$, $\chi_{4275}(856,·)$, $\chi_{4275}(3421,·)$, $\chi_{4275}(1246,·)$, $\chi_{4275}(2401,·)$, $\chi_{4275}(3811,·)$, $\chi_{4275}(2281,·)$, $\chi_{4275}(106,·)$, $\chi_{4275}(1261,·)$, $\chi_{4275}(2671,·)$, $\chi_{4275}(3826,·)$, $\chi_{4275}(1141,·)$, $\chi_{4275}(121,·)$, $\chi_{4275}(3706,·)$, $\chi_{4275}(1531,·)$, $\chi_{4275}(2686,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{14}a^{21}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}+\frac{2}{7}a^{15}+\frac{3}{14}a^{9}+\frac{5}{14}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{14}a^{3}-\frac{1}{2}a^{2}-\frac{5}{14}a+\frac{1}{7}$, $\frac{1}{14}a^{22}-\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{3}{14}a^{16}+\frac{3}{14}a^{10}-\frac{1}{7}a^{8}-\frac{1}{2}a^{5}+\frac{3}{7}a^{4}+\frac{1}{7}a^{2}-\frac{5}{14}a-\frac{1}{2}$, $\frac{1}{14}a^{23}+\frac{2}{7}a^{17}-\frac{1}{2}a^{16}+\frac{3}{14}a^{11}-\frac{1}{7}a^{9}-\frac{1}{2}a^{8}+\frac{3}{7}a^{5}-\frac{1}{2}a^{4}-\frac{5}{14}a^{3}+\frac{1}{7}a^{2}-\frac{1}{2}$, $\frac{1}{14}a^{24}+\frac{2}{7}a^{18}-\frac{1}{2}a^{17}+\frac{3}{14}a^{12}-\frac{1}{7}a^{10}-\frac{1}{2}a^{9}+\frac{3}{7}a^{6}-\frac{1}{2}a^{5}-\frac{5}{14}a^{4}+\frac{1}{7}a^{3}-\frac{1}{2}a$, $\frac{1}{14}a^{25}+\frac{2}{7}a^{19}-\frac{1}{2}a^{18}+\frac{3}{14}a^{13}-\frac{1}{7}a^{11}-\frac{1}{2}a^{10}+\frac{3}{7}a^{7}-\frac{1}{2}a^{6}-\frac{5}{14}a^{5}+\frac{1}{7}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{14}a^{26}-\frac{3}{14}a^{20}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}+\frac{3}{14}a^{14}-\frac{1}{7}a^{12}-\frac{1}{2}a^{11}-\frac{1}{14}a^{8}-\frac{1}{2}a^{7}+\frac{1}{7}a^{6}+\frac{1}{7}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{14}a^{27}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}+\frac{1}{14}a^{15}-\frac{1}{7}a^{13}-\frac{1}{2}a^{12}-\frac{3}{7}a^{9}+\frac{3}{14}a^{7}-\frac{5}{14}a^{6}-\frac{3}{14}a^{3}-\frac{1}{2}a^{2}-\frac{1}{14}a-\frac{1}{14}$, $\frac{1}{14}a^{28}-\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-\frac{1}{2}a^{17}+\frac{1}{14}a^{16}-\frac{1}{7}a^{14}-\frac{1}{2}a^{13}-\frac{3}{7}a^{10}+\frac{3}{14}a^{8}-\frac{5}{14}a^{7}-\frac{3}{14}a^{4}-\frac{1}{2}a^{3}-\frac{1}{14}a^{2}-\frac{1}{14}a$, $\frac{1}{14}a^{29}-\frac{1}{2}a^{19}-\frac{3}{7}a^{17}-\frac{1}{2}a^{16}-\frac{1}{7}a^{15}-\frac{1}{2}a^{14}-\frac{3}{7}a^{11}+\frac{3}{14}a^{9}+\frac{1}{7}a^{8}-\frac{1}{2}a^{6}-\frac{3}{14}a^{5}+\frac{3}{7}a^{3}+\frac{3}{7}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{350}a^{30}-\frac{1}{35}a^{29}+\frac{1}{70}a^{28}-\frac{1}{35}a^{27}+\frac{1}{35}a^{26}+\frac{6}{175}a^{25}+\frac{1}{35}a^{23}-\frac{1}{70}a^{22}+\frac{4}{35}a^{20}+\frac{16}{35}a^{19}-\frac{2}{35}a^{18}+\frac{3}{35}a^{17}+\frac{33}{70}a^{16}-\frac{67}{350}a^{15}+\frac{16}{35}a^{14}-\frac{1}{10}a^{13}-\frac{11}{35}a^{12}-\frac{13}{35}a^{11}+\frac{11}{25}a^{10}-\frac{17}{35}a^{9}+\frac{17}{35}a^{8}+\frac{8}{35}a^{7}-\frac{1}{35}a^{6}-\frac{111}{350}a^{5}+\frac{9}{35}a^{4}-\frac{13}{35}a^{3}+\frac{17}{70}a^{2}+\frac{2}{7}a-\frac{16}{175}$, $\frac{1}{350}a^{31}+\frac{1}{70}a^{29}-\frac{1}{35}a^{28}+\frac{1}{35}a^{27}+\frac{6}{175}a^{26}-\frac{1}{70}a^{25}+\frac{1}{35}a^{24}-\frac{1}{70}a^{23}-\frac{1}{35}a^{21}-\frac{3}{70}a^{20}+\frac{3}{35}a^{19}-\frac{17}{35}a^{18}-\frac{1}{35}a^{17}+\frac{79}{175}a^{16}-\frac{11}{35}a^{15}-\frac{1}{10}a^{14}+\frac{3}{70}a^{13}+\frac{2}{35}a^{12}-\frac{23}{175}a^{11}-\frac{3}{10}a^{10}-\frac{3}{35}a^{9}-\frac{19}{70}a^{8}-\frac{1}{35}a^{7}+\frac{139}{350}a^{6}-\frac{19}{70}a^{5}+\frac{19}{70}a^{4}+\frac{16}{35}a^{3}+\frac{2}{7}a^{2}+\frac{43}{350}a+\frac{1}{70}$, $\frac{1}{350}a^{32}-\frac{1}{35}a^{29}+\frac{1}{35}a^{28}+\frac{6}{175}a^{27}-\frac{1}{70}a^{26}-\frac{1}{70}a^{24}-\frac{1}{35}a^{22}+\frac{1}{35}a^{21}+\frac{3}{35}a^{20}+\frac{3}{10}a^{19}+\frac{9}{35}a^{18}-\frac{17}{350}a^{17}-\frac{27}{70}a^{16}+\frac{2}{7}a^{15}+\frac{3}{70}a^{14}-\frac{8}{35}a^{13}+\frac{27}{175}a^{12}-\frac{31}{70}a^{11}+\frac{1}{14}a^{10}-\frac{17}{35}a^{9}+\frac{33}{70}a^{8}-\frac{111}{350}a^{7}-\frac{9}{70}a^{6}-\frac{2}{7}a^{5}+\frac{11}{35}a^{4}+\frac{3}{7}a^{3}-\frac{66}{175}a^{2}-\frac{12}{35}a+\frac{17}{70}$, $\frac{1}{2450}a^{33}+\frac{1}{1225}a^{32}+\frac{3}{2450}a^{31}-\frac{1}{35}a^{29}+\frac{1}{1225}a^{28}+\frac{1}{50}a^{27}+\frac{13}{1225}a^{26}+\frac{1}{98}a^{25}-\frac{11}{490}a^{24}+\frac{1}{49}a^{23}-\frac{1}{70}a^{22}+\frac{9}{490}a^{21}+\frac{12}{245}a^{20}+\frac{93}{490}a^{19}+\frac{79}{350}a^{18}+\frac{538}{1225}a^{17}+\frac{79}{2450}a^{16}+\frac{153}{490}a^{15}-\frac{68}{245}a^{14}-\frac{418}{1225}a^{13}+\frac{319}{1225}a^{12}+\frac{151}{1225}a^{11}+\frac{11}{490}a^{10}+\frac{26}{245}a^{9}+\frac{709}{2450}a^{8}-\frac{73}{175}a^{7}+\frac{27}{2450}a^{6}-\frac{31}{245}a^{5}-\frac{72}{245}a^{4}-\frac{76}{1225}a^{3}-\frac{81}{175}a^{2}-\frac{13}{1225}a+\frac{69}{245}$, $\frac{1}{2450}a^{34}-\frac{1}{2450}a^{32}+\frac{1}{2450}a^{31}+\frac{1}{1225}a^{29}-\frac{1}{98}a^{28}-\frac{1}{1225}a^{27}+\frac{57}{2450}a^{26}+\frac{11}{490}a^{24}+\frac{1}{490}a^{23}-\frac{6}{245}a^{22}-\frac{4}{245}a^{21}+\frac{12}{245}a^{20}+\frac{883}{2450}a^{19}-\frac{87}{245}a^{18}-\frac{393}{2450}a^{17}+\frac{69}{1225}a^{16}-\frac{67}{245}a^{15}-\frac{473}{1225}a^{14}-\frac{31}{70}a^{13}-\frac{309}{2450}a^{12}-\frac{523}{1225}a^{11}+\frac{92}{245}a^{10}-\frac{3}{350}a^{9}+\frac{57}{245}a^{8}-\frac{99}{2450}a^{7}+\frac{6}{175}a^{6}+\frac{109}{245}a^{5}-\frac{171}{350}a^{4}-\frac{117}{490}a^{3}-\frac{279}{1225}a^{2}-\frac{38}{175}a-\frac{61}{245}$, $\frac{1}{2450}a^{35}+\frac{3}{2450}a^{32}+\frac{3}{2450}a^{31}+\frac{1}{1225}a^{30}+\frac{8}{245}a^{29}-\frac{69}{2450}a^{27}+\frac{13}{1225}a^{26}+\frac{8}{245}a^{25}-\frac{1}{49}a^{24}-\frac{1}{245}a^{23}-\frac{3}{98}a^{22}-\frac{1}{245}a^{21}-\frac{111}{1225}a^{20}-\frac{81}{490}a^{19}-\frac{213}{490}a^{18}-\frac{1061}{2450}a^{17}+\frac{317}{1225}a^{16}+\frac{522}{1225}a^{15}-\frac{54}{245}a^{14}-\frac{159}{490}a^{13}+\frac{817}{2450}a^{12}+\frac{86}{1225}a^{11}+\frac{17}{1225}a^{10}-\frac{57}{245}a^{9}-\frac{53}{490}a^{8}+\frac{8}{175}a^{7}-\frac{229}{1225}a^{6}-\frac{807}{2450}a^{5}+\frac{229}{490}a^{4}-\frac{37}{490}a^{3}+\frac{87}{350}a^{2}+\frac{207}{1225}a+\frac{103}{490}$, $\frac{1}{12250}a^{36}+\frac{1}{6125}a^{35}-\frac{1}{12250}a^{34}-\frac{1}{12250}a^{33}+\frac{1}{6125}a^{32}+\frac{8}{6125}a^{31}-\frac{1}{1750}a^{30}-\frac{61}{6125}a^{29}+\frac{333}{12250}a^{28}-\frac{61}{12250}a^{27}+\frac{13}{12250}a^{26}+\frac{194}{6125}a^{25}+\frac{53}{2450}a^{24}+\frac{17}{2450}a^{23}-\frac{3}{1225}a^{22}-\frac{417}{12250}a^{21}-\frac{186}{875}a^{20}-\frac{1223}{12250}a^{19}-\frac{1304}{6125}a^{18}+\frac{1518}{6125}a^{17}+\frac{68}{6125}a^{16}+\frac{347}{1225}a^{15}-\frac{4929}{12250}a^{14}-\frac{5969}{12250}a^{13}+\frac{2459}{6125}a^{12}-\frac{292}{1225}a^{11}+\frac{2439}{12250}a^{10}+\frac{433}{6125}a^{9}+\frac{3561}{12250}a^{8}-\frac{1087}{12250}a^{7}-\frac{2111}{12250}a^{6}-\frac{5163}{12250}a^{5}-\frac{2194}{6125}a^{4}+\frac{2536}{6125}a^{3}+\frac{1683}{6125}a^{2}+\frac{1966}{6125}a-\frac{302}{875}$, $\frac{1}{12250}a^{37}+\frac{1}{12250}a^{34}-\frac{1}{12250}a^{33}+\frac{17}{12250}a^{32}-\frac{2}{6125}a^{31}+\frac{1}{1750}a^{30}-\frac{423}{12250}a^{29}+\frac{313}{12250}a^{28}-\frac{4}{175}a^{27}+\frac{41}{6125}a^{26}-\frac{13}{6125}a^{25}-\frac{1}{175}a^{24}+\frac{3}{98}a^{23}-\frac{207}{12250}a^{22}+\frac{23}{1225}a^{21}-\frac{3}{35}a^{20}-\frac{1206}{6125}a^{19}+\frac{2181}{6125}a^{18}+\frac{3679}{12250}a^{17}+\frac{1289}{6125}a^{16}+\frac{2008}{6125}a^{15}-\frac{5211}{12250}a^{14}+\frac{3411}{12250}a^{13}-\frac{418}{6125}a^{12}-\frac{631}{12250}a^{11}-\frac{186}{6125}a^{10}+\frac{3279}{12250}a^{9}+\frac{2321}{12250}a^{8}-\frac{328}{875}a^{7}+\frac{2412}{6125}a^{6}+\frac{4223}{12250}a^{5}-\frac{3026}{6125}a^{4}+\frac{2566}{6125}a^{3}-\frac{9}{25}a^{2}+\frac{619}{6125}a-\frac{71}{250}$, $\frac{1}{12250}a^{38}+\frac{1}{12250}a^{35}-\frac{1}{12250}a^{34}+\frac{1}{6125}a^{33}+\frac{1}{12250}a^{32}-\frac{3}{12250}a^{31}-\frac{3}{12250}a^{30}-\frac{387}{12250}a^{29}+\frac{4}{1225}a^{28}+\frac{146}{6125}a^{27}-\frac{173}{6125}a^{26}+\frac{9}{2450}a^{25}-\frac{3}{98}a^{24}-\frac{216}{6125}a^{23}+\frac{11}{2450}a^{22}+\frac{1}{490}a^{21}+\frac{869}{6125}a^{20}+\frac{1406}{6125}a^{19}-\frac{4441}{12250}a^{18}+\frac{5093}{12250}a^{17}-\frac{1439}{12250}a^{16}-\frac{2301}{12250}a^{15}+\frac{3111}{12250}a^{14}-\frac{27}{125}a^{13}+\frac{2407}{6125}a^{12}-\frac{2206}{6125}a^{11}+\frac{3959}{12250}a^{10}-\frac{177}{6125}a^{9}-\frac{876}{6125}a^{8}-\frac{1231}{12250}a^{7}-\frac{1467}{12250}a^{6}+\frac{2903}{12250}a^{5}-\frac{212}{875}a^{4}+\frac{1149}{2450}a^{3}-\frac{547}{12250}a^{2}+\frac{3841}{12250}a+\frac{597}{2450}$, $\frac{1}{1849750}a^{39}+\frac{3}{924875}a^{38}+\frac{71}{1849750}a^{37}-\frac{71}{1849750}a^{36}+\frac{181}{1849750}a^{35}-\frac{163}{924875}a^{34}+\frac{157}{924875}a^{33}-\frac{549}{1849750}a^{32}-\frac{1847}{1849750}a^{31}-\frac{1599}{1849750}a^{30}+\frac{59589}{1849750}a^{29}-\frac{1614}{132125}a^{28}-\frac{30087}{1849750}a^{27}-\frac{817}{36995}a^{26}+\frac{7999}{264250}a^{25}+\frac{18584}{924875}a^{24}-\frac{27857}{1849750}a^{23}+\frac{40543}{1849750}a^{22}+\frac{421}{924875}a^{21}+\frac{201069}{924875}a^{20}+\frac{50644}{184975}a^{19}-\frac{5295}{14798}a^{18}-\frac{689809}{1849750}a^{17}+\frac{884441}{1849750}a^{16}+\frac{41093}{264250}a^{15}-\frac{685333}{1849750}a^{14}+\frac{15133}{132125}a^{13}-\frac{112673}{369950}a^{12}+\frac{18759}{37750}a^{11}+\frac{4056}{26425}a^{10}+\frac{12714}{132125}a^{9}+\frac{246203}{924875}a^{8}+\frac{412497}{924875}a^{7}+\frac{159056}{924875}a^{6}-\frac{433218}{924875}a^{5}-\frac{775939}{1849750}a^{4}-\frac{333482}{924875}a^{3}+\frac{35001}{924875}a^{2}+\frac{177511}{369950}a+\frac{50331}{924875}$, $\frac{1}{606040991500}a^{40}+\frac{9091}{60604099150}a^{39}+\frac{920781}{151510247875}a^{38}+\frac{1302657}{151510247875}a^{37}+\frac{13478903}{606040991500}a^{36}+\frac{24428647}{303020495750}a^{35}-\frac{8413093}{121208198300}a^{34}-\frac{58495473}{303020495750}a^{33}-\frac{818509317}{606040991500}a^{32}+\frac{151275571}{303020495750}a^{31}-\frac{33119853}{303020495750}a^{30}+\frac{40844813}{1731545690}a^{29}-\frac{1013678762}{151510247875}a^{28}-\frac{528051212}{21644321125}a^{27}-\frac{4158481912}{151510247875}a^{26}+\frac{6521589719}{303020495750}a^{25}-\frac{372340641}{30302049575}a^{24}+\frac{6327643111}{303020495750}a^{23}+\frac{286405683}{21644321125}a^{22}+\frac{1970641077}{303020495750}a^{21}-\frac{6795016999}{60604099150}a^{20}-\frac{21588964}{123681835}a^{19}-\frac{22494657309}{151510247875}a^{18}-\frac{4833311913}{43288642250}a^{17}-\frac{55573513873}{121208198300}a^{16}+\frac{45787456098}{151510247875}a^{15}-\frac{12133922328}{30302049575}a^{14}-\frac{9613254138}{30302049575}a^{13}-\frac{10139366183}{24241639660}a^{12}-\frac{8931025276}{151510247875}a^{11}+\frac{113290147073}{303020495750}a^{10}-\frac{18607240299}{60604099150}a^{9}+\frac{198714302831}{606040991500}a^{8}+\frac{96043037791}{303020495750}a^{7}-\frac{5478157681}{86577284500}a^{6}+\frac{18940543149}{151510247875}a^{5}-\frac{8298452499}{17315456900}a^{4}-\frac{34327164191}{303020495750}a^{3}-\frac{133549729239}{606040991500}a^{2}-\frac{32422606813}{151510247875}a-\frac{47998872399}{121208198300}$, $\frac{1}{606040991500}a^{41}+\frac{187}{6060409915}a^{39}-\frac{72354}{21644321125}a^{38}-\frac{719567}{121208198300}a^{37}-\frac{133963}{12120819830}a^{36}+\frac{23381189}{606040991500}a^{35}+\frac{8393647}{151510247875}a^{34}+\frac{1325411}{86577284500}a^{33}+\frac{89318109}{303020495750}a^{32}+\frac{50468422}{151510247875}a^{31}-\frac{22359226}{21644321125}a^{30}+\frac{295915964}{151510247875}a^{29}+\frac{3057727341}{303020495750}a^{28}-\frac{3557321426}{151510247875}a^{27}+\frac{6881114131}{303020495750}a^{26}+\frac{382192369}{303020495750}a^{25}-\frac{11546187}{865772845}a^{24}+\frac{160689703}{21644321125}a^{23}-\frac{951096079}{30302049575}a^{22}-\frac{1978765913}{151510247875}a^{21}-\frac{10437793077}{43288642250}a^{20}+\frac{53296929191}{151510247875}a^{19}+\frac{3005873588}{6060409915}a^{18}+\frac{45701950319}{606040991500}a^{17}-\frac{135232171149}{303020495750}a^{16}-\frac{44280446611}{303020495750}a^{15}+\frac{75394032423}{151510247875}a^{14}+\frac{42220214143}{86577284500}a^{13}+\frac{35285183351}{303020495750}a^{12}-\frac{4628171819}{21644321125}a^{11}+\frac{110006041681}{303020495750}a^{10}-\frac{5951837299}{86577284500}a^{9}-\frac{51795066251}{303020495750}a^{8}-\frac{141730455163}{606040991500}a^{7}+\frac{8656466703}{43288642250}a^{6}-\frac{24876124257}{606040991500}a^{5}+\frac{3485296456}{151510247875}a^{4}-\frac{109316218647}{606040991500}a^{3}+\frac{12079059186}{151510247875}a^{2}+\frac{29704633201}{606040991500}a+\frac{63844060038}{151510247875}$, $\frac{1}{73\!\cdots\!00}a^{42}-\frac{50\!\cdots\!57}{73\!\cdots\!00}a^{41}+\frac{28\!\cdots\!83}{36\!\cdots\!50}a^{40}+\frac{19\!\cdots\!91}{26\!\cdots\!75}a^{39}-\frac{11\!\cdots\!59}{73\!\cdots\!00}a^{38}+\frac{28\!\cdots\!69}{73\!\cdots\!00}a^{37}-\frac{16\!\cdots\!93}{73\!\cdots\!00}a^{36}+\frac{54\!\cdots\!17}{73\!\cdots\!00}a^{35}-\frac{45\!\cdots\!11}{73\!\cdots\!00}a^{34}-\frac{13\!\cdots\!17}{73\!\cdots\!00}a^{33}-\frac{24\!\cdots\!34}{36\!\cdots\!25}a^{32}-\frac{37\!\cdots\!71}{10\!\cdots\!50}a^{31}-\frac{84\!\cdots\!73}{36\!\cdots\!50}a^{30}-\frac{72\!\cdots\!43}{26\!\cdots\!75}a^{29}-\frac{22\!\cdots\!97}{18\!\cdots\!25}a^{28}+\frac{29\!\cdots\!24}{36\!\cdots\!25}a^{27}+\frac{95\!\cdots\!69}{36\!\cdots\!25}a^{26}-\frac{73\!\cdots\!51}{18\!\cdots\!25}a^{25}+\frac{39\!\cdots\!11}{18\!\cdots\!25}a^{24}-\frac{24\!\cdots\!68}{18\!\cdots\!25}a^{23}-\frac{10\!\cdots\!57}{14\!\cdots\!30}a^{22}+\frac{10\!\cdots\!46}{52\!\cdots\!75}a^{21}-\frac{58\!\cdots\!39}{18\!\cdots\!25}a^{20}+\frac{45\!\cdots\!59}{18\!\cdots\!25}a^{19}+\frac{91\!\cdots\!27}{73\!\cdots\!00}a^{18}+\frac{34\!\cdots\!79}{14\!\cdots\!00}a^{17}-\frac{47\!\cdots\!48}{36\!\cdots\!25}a^{16}+\frac{73\!\cdots\!54}{18\!\cdots\!25}a^{15}+\frac{38\!\cdots\!57}{10\!\cdots\!00}a^{14}-\frac{39\!\cdots\!97}{73\!\cdots\!00}a^{13}+\frac{20\!\cdots\!67}{73\!\cdots\!65}a^{12}-\frac{16\!\cdots\!67}{10\!\cdots\!50}a^{11}+\frac{17\!\cdots\!59}{73\!\cdots\!00}a^{10}-\frac{90\!\cdots\!19}{73\!\cdots\!00}a^{9}-\frac{21\!\cdots\!73}{73\!\cdots\!00}a^{8}+\frac{14\!\cdots\!69}{42\!\cdots\!80}a^{7}+\frac{37\!\cdots\!27}{14\!\cdots\!00}a^{6}-\frac{36\!\cdots\!59}{73\!\cdots\!00}a^{5}-\frac{22\!\cdots\!99}{15\!\cdots\!00}a^{4}-\frac{32\!\cdots\!53}{15\!\cdots\!00}a^{3}+\frac{51\!\cdots\!89}{10\!\cdots\!00}a^{2}-\frac{50\!\cdots\!51}{73\!\cdots\!00}a-\frac{13\!\cdots\!39}{36\!\cdots\!50}$, $\frac{1}{73\!\cdots\!00}a^{43}+\frac{60\!\cdots\!41}{73\!\cdots\!00}a^{41}+\frac{52\!\cdots\!81}{14\!\cdots\!00}a^{40}-\frac{18\!\cdots\!29}{73\!\cdots\!00}a^{39}+\frac{61\!\cdots\!39}{36\!\cdots\!50}a^{38}-\frac{46\!\cdots\!09}{73\!\cdots\!50}a^{37}+\frac{17\!\cdots\!63}{73\!\cdots\!00}a^{36}-\frac{50\!\cdots\!97}{36\!\cdots\!50}a^{35}+\frac{13\!\cdots\!13}{73\!\cdots\!00}a^{34}-\frac{10\!\cdots\!89}{14\!\cdots\!00}a^{33}-\frac{94\!\cdots\!39}{73\!\cdots\!00}a^{32}+\frac{31\!\cdots\!81}{36\!\cdots\!50}a^{31}-\frac{20\!\cdots\!68}{18\!\cdots\!25}a^{30}+\frac{12\!\cdots\!21}{36\!\cdots\!50}a^{29}+\frac{41\!\cdots\!97}{36\!\cdots\!50}a^{28}-\frac{62\!\cdots\!27}{18\!\cdots\!25}a^{27}-\frac{73\!\cdots\!11}{36\!\cdots\!50}a^{26}-\frac{10\!\cdots\!19}{36\!\cdots\!50}a^{25}+\frac{37\!\cdots\!99}{36\!\cdots\!50}a^{24}-\frac{45\!\cdots\!52}{18\!\cdots\!25}a^{23}+\frac{58\!\cdots\!88}{36\!\cdots\!25}a^{22}-\frac{10\!\cdots\!32}{18\!\cdots\!25}a^{21}-\frac{32\!\cdots\!38}{18\!\cdots\!25}a^{20}+\frac{69\!\cdots\!47}{73\!\cdots\!00}a^{19}+\frac{87\!\cdots\!63}{18\!\cdots\!25}a^{18}+\frac{30\!\cdots\!09}{10\!\cdots\!00}a^{17}-\frac{54\!\cdots\!07}{73\!\cdots\!00}a^{16}-\frac{34\!\cdots\!13}{73\!\cdots\!00}a^{15}+\frac{26\!\cdots\!27}{18\!\cdots\!25}a^{14}+\frac{33\!\cdots\!49}{73\!\cdots\!00}a^{13}-\frac{49\!\cdots\!91}{73\!\cdots\!00}a^{12}-\frac{20\!\cdots\!73}{73\!\cdots\!00}a^{11}+\frac{17\!\cdots\!09}{36\!\cdots\!50}a^{10}+\frac{39\!\cdots\!04}{26\!\cdots\!75}a^{9}+\frac{27\!\cdots\!69}{14\!\cdots\!00}a^{8}+\frac{67\!\cdots\!26}{18\!\cdots\!25}a^{7}+\frac{18\!\cdots\!23}{73\!\cdots\!00}a^{6}-\frac{12\!\cdots\!69}{36\!\cdots\!50}a^{5}+\frac{23\!\cdots\!51}{21\!\cdots\!00}a^{4}+\frac{12\!\cdots\!33}{26\!\cdots\!75}a^{3}+\frac{15\!\cdots\!63}{73\!\cdots\!00}a^{2}+\frac{35\!\cdots\!17}{14\!\cdots\!00}a-\frac{29\!\cdots\!67}{73\!\cdots\!00}$, $\frac{1}{16\!\cdots\!00}a^{44}-\frac{60\!\cdots\!61}{16\!\cdots\!00}a^{43}-\frac{21\!\cdots\!67}{16\!\cdots\!00}a^{42}+\frac{46\!\cdots\!83}{16\!\cdots\!00}a^{41}-\frac{19\!\cdots\!27}{16\!\cdots\!00}a^{40}+\frac{38\!\cdots\!39}{16\!\cdots\!00}a^{39}+\frac{13\!\cdots\!96}{59\!\cdots\!75}a^{38}+\frac{24\!\cdots\!76}{83\!\cdots\!25}a^{37}-\frac{21\!\cdots\!57}{83\!\cdots\!50}a^{36}+\frac{19\!\cdots\!79}{83\!\cdots\!50}a^{35}-\frac{10\!\cdots\!13}{16\!\cdots\!00}a^{34}+\frac{29\!\cdots\!83}{34\!\cdots\!00}a^{33}-\frac{44\!\cdots\!56}{41\!\cdots\!25}a^{32}-\frac{10\!\cdots\!64}{41\!\cdots\!25}a^{31}+\frac{59\!\cdots\!42}{41\!\cdots\!25}a^{30}+\frac{12\!\cdots\!27}{83\!\cdots\!50}a^{29}+\frac{11\!\cdots\!69}{41\!\cdots\!25}a^{28}-\frac{49\!\cdots\!46}{16\!\cdots\!65}a^{27}+\frac{29\!\cdots\!43}{41\!\cdots\!25}a^{26}-\frac{25\!\cdots\!79}{83\!\cdots\!50}a^{25}-\frac{24\!\cdots\!17}{11\!\cdots\!75}a^{24}+\frac{34\!\cdots\!13}{12\!\cdots\!75}a^{23}-\frac{12\!\cdots\!84}{41\!\cdots\!25}a^{22}+\frac{25\!\cdots\!68}{41\!\cdots\!25}a^{21}+\frac{14\!\cdots\!63}{16\!\cdots\!00}a^{20}-\frac{18\!\cdots\!59}{16\!\cdots\!00}a^{19}+\frac{60\!\cdots\!17}{16\!\cdots\!00}a^{18}+\frac{64\!\cdots\!77}{16\!\cdots\!00}a^{17}+\frac{72\!\cdots\!89}{16\!\cdots\!00}a^{16}+\frac{24\!\cdots\!37}{16\!\cdots\!00}a^{15}+\frac{72\!\cdots\!23}{16\!\cdots\!00}a^{14}-\frac{88\!\cdots\!87}{95\!\cdots\!80}a^{13}+\frac{50\!\cdots\!07}{16\!\cdots\!00}a^{12}+\frac{11\!\cdots\!59}{22\!\cdots\!00}a^{11}+\frac{73\!\cdots\!21}{17\!\cdots\!50}a^{10}-\frac{23\!\cdots\!68}{41\!\cdots\!25}a^{9}+\frac{23\!\cdots\!99}{83\!\cdots\!50}a^{8}+\frac{55\!\cdots\!41}{11\!\cdots\!50}a^{7}+\frac{11\!\cdots\!69}{41\!\cdots\!25}a^{6}-\frac{39\!\cdots\!79}{83\!\cdots\!50}a^{5}-\frac{53\!\cdots\!99}{11\!\cdots\!50}a^{4}-\frac{20\!\cdots\!86}{41\!\cdots\!25}a^{3}+\frac{51\!\cdots\!79}{16\!\cdots\!00}a^{2}+\frac{64\!\cdots\!17}{16\!\cdots\!00}a+\frac{59\!\cdots\!12}{93\!\cdots\!25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $44$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^45 - 15*x^44 - 120*x^43 + 2785*x^42 + 2040*x^41 - 222342*x^40 + 420425*x^39 + 10024590*x^38 - 35069730*x^37 - 280556895*x^36 + 1389459441*x^35 + 4980489270*x^34 - 34327919505*x^33 - 52485204525*x^32 + 576080544270*x^31 + 196092367854*x^30 - 6820772763030*x^29 + 3051952728270*x^28 + 57922300812880*x^27 - 59937846525180*x^26 - 353495076875202*x^25 + 542694665981220*x^24 + 1531071286376460*x^23 - 3131712122030760*x^22 - 4545064586341055*x^21 + 12339167509476885*x^20 + 8461213880546430*x^19 - 33709107574234355*x^18 - 6968642817313350*x^17 + 63373889569191960*x^16 - 7076452922900098*x^15 - 80218608988132905*x^14 + 26470314281644410*x^13 + 66243722166245240*x^12 - 32060240741785995*x^11 - 34356066621763764*x^10 + 20781515138515650*x^9 + 10477766738441505*x^8 - 7675031336820660*x^7 - 1594722107742745*x^6 + 1559444254090284*x^5 + 49643486026125*x^4 - 150881459933485*x^3 + 10931860799430*x^2 + 4297070637735*x - 401780151251);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times C_{15}$ (as 45T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 45
The 45 conjugacy class representatives for $C_3\times C_{15}$
Character table for $C_3\times C_{15}$

Intermediate fields

\(\Q(\zeta_{9})^+\), 3.3.361.1, 3.3.29241.1, 3.3.29241.2, 5.5.390625.1, 9.9.25002110044521.1, 15.15.207828545629978179931640625.1, 15.15.365440026390612125396728515625.1, 15.15.1274210583519814691674768924713134765625.1, 15.15.1274210583519814691674768924713134765625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15^{3}$ R R ${\href{/padicField/7.3.0.1}{3} }^{15}$ $15^{3}$ $15^{3}$ $15^{3}$ R $15^{3}$ $15^{3}$ $15^{3}$ ${\href{/padicField/37.5.0.1}{5} }^{9}$ $15^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{15}$ $15^{3}$ $15^{3}$ $15^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $45$$3$$15$$60$
\(5\) Copy content Toggle raw display 5.15.24.88$x^{15} + 60 x^{14} + 1200 x^{13} + 8000 x^{12} + 15 x^{10} + 600 x^{9} + 6000 x^{8} + 7575 x^{5} + 151500 x^{4} - 337375$$5$$3$$24$$C_{15}$$[2]^{3}$
5.15.24.88$x^{15} + 60 x^{14} + 1200 x^{13} + 8000 x^{12} + 15 x^{10} + 600 x^{9} + 6000 x^{8} + 7575 x^{5} + 151500 x^{4} - 337375$$5$$3$$24$$C_{15}$$[2]^{3}$
5.15.24.88$x^{15} + 60 x^{14} + 1200 x^{13} + 8000 x^{12} + 15 x^{10} + 600 x^{9} + 6000 x^{8} + 7575 x^{5} + 151500 x^{4} - 337375$$5$$3$$24$$C_{15}$$[2]^{3}$
\(19\) Copy content Toggle raw display 19.15.10.1$x^{15} + 95 x^{12} + 15 x^{11} + 51 x^{10} + 3610 x^{9} - 4275 x^{8} - 28995 x^{7} + 69100 x^{6} - 31623 x^{5} + 835620 x^{4} + 700180 x^{3} + 1194855 x^{2} - 1636410 x + 2391332$$3$$5$$10$$C_{15}$$[\ ]_{3}^{5}$
19.15.10.1$x^{15} + 95 x^{12} + 15 x^{11} + 51 x^{10} + 3610 x^{9} - 4275 x^{8} - 28995 x^{7} + 69100 x^{6} - 31623 x^{5} + 835620 x^{4} + 700180 x^{3} + 1194855 x^{2} - 1636410 x + 2391332$$3$$5$$10$$C_{15}$$[\ ]_{3}^{5}$
19.15.10.1$x^{15} + 95 x^{12} + 15 x^{11} + 51 x^{10} + 3610 x^{9} - 4275 x^{8} - 28995 x^{7} + 69100 x^{6} - 31623 x^{5} + 835620 x^{4} + 700180 x^{3} + 1194855 x^{2} - 1636410 x + 2391332$$3$$5$$10$$C_{15}$$[\ ]_{3}^{5}$