Properties

Label 42.0.938...043.1
Degree $42$
Signature $[0, 21]$
Discriminant $-9.380\times 10^{66}$
Root discriminant $39.32$
Ramified prime $43$
Class number $211$ (GRH)
Class group $[211]$ (GRH)
Galois group $C_{42}$ (as 42T1)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + x^40 - x^39 + x^38 - x^37 + x^36 - x^35 + x^34 - x^33 + x^32 - x^31 + x^30 - x^29 + x^28 - x^27 + x^26 - x^25 + x^24 - x^23 + x^22 - x^21 + x^20 - x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
 
gp: K = bnfinit(x^42 - x^41 + x^40 - x^39 + x^38 - x^37 + x^36 - x^35 + x^34 - x^33 + x^32 - x^31 + x^30 - x^29 + x^28 - x^27 + x^26 - x^25 + x^24 - x^23 + x^22 - x^21 + x^20 - x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1]);
 

\( x^{42} - x^{41} + x^{40} - x^{39} + x^{38} - x^{37} + x^{36} - x^{35} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $42$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 21]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(-93\!\cdots\!043\)\(\medspace = -\,43^{41}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $39.32$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $43$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Gal(K/\Q)|$:  $42$
This field is Galois and abelian over $\Q$.
Conductor:  \(43\)
Dirichlet character group:    $\lbrace$$\chi_{43}(1,·)$, $\chi_{43}(2,·)$, $\chi_{43}(3,·)$, $\chi_{43}(4,·)$, $\chi_{43}(5,·)$, $\chi_{43}(6,·)$, $\chi_{43}(7,·)$, $\chi_{43}(8,·)$, $\chi_{43}(9,·)$, $\chi_{43}(10,·)$, $\chi_{43}(11,·)$, $\chi_{43}(12,·)$, $\chi_{43}(13,·)$, $\chi_{43}(14,·)$, $\chi_{43}(15,·)$, $\chi_{43}(16,·)$, $\chi_{43}(17,·)$, $\chi_{43}(18,·)$, $\chi_{43}(19,·)$, $\chi_{43}(20,·)$, $\chi_{43}(21,·)$, $\chi_{43}(22,·)$, $\chi_{43}(23,·)$, $\chi_{43}(24,·)$, $\chi_{43}(25,·)$, $\chi_{43}(26,·)$, $\chi_{43}(27,·)$, $\chi_{43}(28,·)$, $\chi_{43}(29,·)$, $\chi_{43}(30,·)$, $\chi_{43}(31,·)$, $\chi_{43}(32,·)$, $\chi_{43}(33,·)$, $\chi_{43}(34,·)$, $\chi_{43}(35,·)$, $\chi_{43}(36,·)$, $\chi_{43}(37,·)$, $\chi_{43}(38,·)$, $\chi_{43}(39,·)$, $\chi_{43}(40,·)$, $\chi_{43}(41,·)$$\chi_{43}(42,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

$C_{211}$, which has order $211$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( a \) (order $86$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 2748021948787771.5 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{21}\cdot 2748021948787771.5 \cdot 211}{86\sqrt{9380082945933081406113456619151991432292083579779389915131296484043}}\approx 0.127197359940775$ (assuming GRH)

Galois group

$C_{42}$ (as 42T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A cyclic group of order 42
The 42 conjugacy class representatives for $C_{42}$
Character table for $C_{42}$ is not computed

Intermediate fields

\(\Q(\sqrt{-43}) \), 3.3.1849.1, 6.0.147008443.1, 7.7.6321363049.1, 14.0.1718264124282290785243.1, \(\Q(\zeta_{43})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/LocalNumberField/2.14.0.1}{14} }^{3}$ $42$ $42$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{7}$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{6}$ $21^{2}$ $21^{2}$ $42$ $21^{2}$ $42$ $21^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{7}$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{6}$ R ${\href{/LocalNumberField/47.7.0.1}{7} }^{6}$ $21^{2}$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
43Data not computed