Properties

Label 41.41.105...201.1
Degree $41$
Signature $[41, 0]$
Discriminant $1.054\times 10^{129}$
Root discriminant \(1402.48\)
Ramified prime $41$
Class number not computed
Class group not computed
Galois group $C_{41}$ (as 41T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401)
 
gp: K = bnfinit(y^41 - 820*y^39 - 533*y^38 + 303031*y^37 + 376913*y^36 - 66737627*y^35 - 118821690*y^34 + 9764169434*y^33 + 22080920476*y^32 - 1002016650746*y^31 - 2696024483356*y^30 + 74276881167057*y^29 + 228322554454083*y^28 - 4038255389081271*y^27 - 13810013721005555*y^26 + 161957213612863355*y^25 + 605630162979885300*y^24 - 4783062094323192024*y^23 - 19362795070723667202*y^22 + 103087839028351278942*y^21 + 450266165503910224663*y^20 - 1593603545898162906857*y^19 - 7540369918979718461657*y^18 + 17171487184711671438215*y^17 + 89253263738667697145313*y^16 - 123172673161638273736870*y^15 - 724697045982659590514328*y^14 + 544476915889889670403041*y^13 + 3855061119747652830292013*y^12 - 1279320329561947245453521*y^11 - 12510633939200726076347653*y^10 + 1043523355082184352460715*y^9 + 22013783610841586394614893*y^8 + 598853130650094992883999*y^7 - 16988637915887608842729071*y^6 - 1349373804383563050067379*y^5 + 3896754513924753580219610*y^4 + 333868055127333108898601*y^3 - 256246929318582500140348*y^2 - 10590850429623318361311*y + 2727257042363914863401, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401)
 

\( x^{41} - 820 x^{39} - 533 x^{38} + 303031 x^{37} + 376913 x^{36} - 66737627 x^{35} + \cdots + 27\!\cdots\!01 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $41$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[41, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(105\!\cdots\!201\) \(\medspace = 41^{80}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(1402.48\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $41^{80/41}\approx 1402.475651548207$
Ramified primes:   \(41\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $41$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1681=41^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{1681}(1,·)$, $\chi_{1681}(1026,·)$, $\chi_{1681}(903,·)$, $\chi_{1681}(780,·)$, $\chi_{1681}(657,·)$, $\chi_{1681}(534,·)$, $\chi_{1681}(1559,·)$, $\chi_{1681}(411,·)$, $\chi_{1681}(1436,·)$, $\chi_{1681}(288,·)$, $\chi_{1681}(1313,·)$, $\chi_{1681}(165,·)$, $\chi_{1681}(1190,·)$, $\chi_{1681}(42,·)$, $\chi_{1681}(1067,·)$, $\chi_{1681}(944,·)$, $\chi_{1681}(821,·)$, $\chi_{1681}(698,·)$, $\chi_{1681}(575,·)$, $\chi_{1681}(1600,·)$, $\chi_{1681}(452,·)$, $\chi_{1681}(1477,·)$, $\chi_{1681}(329,·)$, $\chi_{1681}(1354,·)$, $\chi_{1681}(206,·)$, $\chi_{1681}(1231,·)$, $\chi_{1681}(83,·)$, $\chi_{1681}(1108,·)$, $\chi_{1681}(985,·)$, $\chi_{1681}(862,·)$, $\chi_{1681}(739,·)$, $\chi_{1681}(616,·)$, $\chi_{1681}(1641,·)$, $\chi_{1681}(493,·)$, $\chi_{1681}(1518,·)$, $\chi_{1681}(370,·)$, $\chi_{1681}(1395,·)$, $\chi_{1681}(247,·)$, $\chi_{1681}(1272,·)$, $\chi_{1681}(124,·)$, $\chi_{1681}(1149,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $\frac{1}{226315634441027}a^{39}+\frac{68829831999505}{226315634441027}a^{38}+\frac{85277659288374}{226315634441027}a^{37}+\frac{38071080404819}{226315634441027}a^{36}-\frac{66783777056075}{226315634441027}a^{35}-\frac{84838219747661}{226315634441027}a^{34}-\frac{104321769666912}{226315634441027}a^{33}+\frac{105923167280333}{226315634441027}a^{32}-\frac{32881735672093}{226315634441027}a^{31}+\frac{111120921179873}{226315634441027}a^{30}-\frac{104656276531248}{226315634441027}a^{29}+\frac{6451479135422}{226315634441027}a^{28}+\frac{22022404970817}{226315634441027}a^{27}-\frac{86986215702786}{226315634441027}a^{26}+\frac{73250616794429}{226315634441027}a^{25}-\frac{108712554878332}{226315634441027}a^{24}-\frac{13062077579154}{226315634441027}a^{23}-\frac{87899870433838}{226315634441027}a^{22}+\frac{68871135207400}{226315634441027}a^{21}+\frac{65758772582085}{226315634441027}a^{20}+\frac{100830015047028}{226315634441027}a^{19}+\frac{84937298981613}{226315634441027}a^{18}-\frac{21490156759819}{226315634441027}a^{17}-\frac{110536611130363}{226315634441027}a^{16}-\frac{97143126286265}{226315634441027}a^{15}-\frac{34189055557684}{226315634441027}a^{14}-\frac{44686178341650}{226315634441027}a^{13}+\frac{105254690102437}{226315634441027}a^{12}-\frac{49641316303647}{226315634441027}a^{11}+\frac{8096856417015}{226315634441027}a^{10}-\frac{29077702905279}{226315634441027}a^{9}-\frac{112928804397919}{226315634441027}a^{8}-\frac{82851895116003}{226315634441027}a^{7}+\frac{103782156306896}{226315634441027}a^{6}+\frac{106493691366112}{226315634441027}a^{5}-\frac{90006018752259}{226315634441027}a^{4}-\frac{87234973543257}{226315634441027}a^{3}+\frac{65333588526996}{226315634441027}a^{2}+\frac{52105551412211}{226315634441027}a+\frac{81780235767749}{226315634441027}$, $\frac{1}{22\!\cdots\!53}a^{40}+\frac{66\!\cdots\!41}{22\!\cdots\!53}a^{39}-\frac{51\!\cdots\!08}{22\!\cdots\!53}a^{38}+\frac{74\!\cdots\!00}{22\!\cdots\!53}a^{37}+\frac{23\!\cdots\!40}{22\!\cdots\!53}a^{36}+\frac{38\!\cdots\!43}{22\!\cdots\!53}a^{35}-\frac{30\!\cdots\!75}{22\!\cdots\!53}a^{34}-\frac{10\!\cdots\!78}{22\!\cdots\!53}a^{33}+\frac{46\!\cdots\!92}{22\!\cdots\!53}a^{32}-\frac{21\!\cdots\!81}{22\!\cdots\!53}a^{31}-\frac{65\!\cdots\!95}{22\!\cdots\!53}a^{30}-\frac{59\!\cdots\!62}{22\!\cdots\!53}a^{29}+\frac{60\!\cdots\!45}{22\!\cdots\!53}a^{28}-\frac{80\!\cdots\!12}{22\!\cdots\!53}a^{27}+\frac{73\!\cdots\!94}{22\!\cdots\!53}a^{26}-\frac{51\!\cdots\!12}{22\!\cdots\!53}a^{25}+\frac{10\!\cdots\!59}{22\!\cdots\!53}a^{24}-\frac{60\!\cdots\!49}{22\!\cdots\!53}a^{23}+\frac{42\!\cdots\!46}{22\!\cdots\!53}a^{22}-\frac{91\!\cdots\!17}{22\!\cdots\!53}a^{21}+\frac{48\!\cdots\!87}{22\!\cdots\!53}a^{20}+\frac{29\!\cdots\!86}{22\!\cdots\!53}a^{19}+\frac{81\!\cdots\!08}{22\!\cdots\!53}a^{18}+\frac{10\!\cdots\!19}{22\!\cdots\!53}a^{17}-\frac{92\!\cdots\!05}{22\!\cdots\!53}a^{16}-\frac{62\!\cdots\!24}{22\!\cdots\!53}a^{15}-\frac{94\!\cdots\!42}{22\!\cdots\!53}a^{14}-\frac{69\!\cdots\!94}{22\!\cdots\!53}a^{13}-\frac{48\!\cdots\!75}{22\!\cdots\!53}a^{12}+\frac{37\!\cdots\!07}{22\!\cdots\!53}a^{11}+\frac{20\!\cdots\!39}{22\!\cdots\!53}a^{10}+\frac{79\!\cdots\!07}{22\!\cdots\!53}a^{9}-\frac{11\!\cdots\!32}{22\!\cdots\!53}a^{8}-\frac{10\!\cdots\!22}{22\!\cdots\!53}a^{7}-\frac{10\!\cdots\!10}{22\!\cdots\!53}a^{6}+\frac{43\!\cdots\!76}{22\!\cdots\!53}a^{5}+\frac{73\!\cdots\!45}{22\!\cdots\!53}a^{4}+\frac{17\!\cdots\!23}{22\!\cdots\!53}a^{3}-\frac{72\!\cdots\!55}{22\!\cdots\!53}a^{2}+\frac{83\!\cdots\!81}{22\!\cdots\!53}a-\frac{23\!\cdots\!61}{22\!\cdots\!53}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $40$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^41 - 820*x^39 - 533*x^38 + 303031*x^37 + 376913*x^36 - 66737627*x^35 - 118821690*x^34 + 9764169434*x^33 + 22080920476*x^32 - 1002016650746*x^31 - 2696024483356*x^30 + 74276881167057*x^29 + 228322554454083*x^28 - 4038255389081271*x^27 - 13810013721005555*x^26 + 161957213612863355*x^25 + 605630162979885300*x^24 - 4783062094323192024*x^23 - 19362795070723667202*x^22 + 103087839028351278942*x^21 + 450266165503910224663*x^20 - 1593603545898162906857*x^19 - 7540369918979718461657*x^18 + 17171487184711671438215*x^17 + 89253263738667697145313*x^16 - 123172673161638273736870*x^15 - 724697045982659590514328*x^14 + 544476915889889670403041*x^13 + 3855061119747652830292013*x^12 - 1279320329561947245453521*x^11 - 12510633939200726076347653*x^10 + 1043523355082184352460715*x^9 + 22013783610841586394614893*x^8 + 598853130650094992883999*x^7 - 16988637915887608842729071*x^6 - 1349373804383563050067379*x^5 + 3896754513924753580219610*x^4 + 333868055127333108898601*x^3 - 256246929318582500140348*x^2 - 10590850429623318361311*x + 2727257042363914863401);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{41}$ (as 41T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 41
The 41 conjugacy class representatives for $C_{41}$
Character table for $C_{41}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ R $41$ $41$ $41$ $41$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(41\) Copy content Toggle raw display Deg $41$$41$$1$$80$