Properties

Label 40.0.809...689.1
Degree $40$
Signature $[0, 20]$
Discriminant $8.099\times 10^{70}$
Root discriminant \(59.25\)
Ramified primes $11,13$
Class number $1525$ (GRH)
Class group [1525] (GRH)
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049)
 
gp: K = bnfinit(y^40 - y^39 - y^38 + 7*y^37 - 12*y^36 - 3*y^35 + 58*y^34 - 121*y^33 + 29*y^32 + 454*y^31 - 1170*y^30 - 413*y^29 + 4482*y^28 - 9698*y^27 + 2592*y^26 + 35971*y^25 - 93393*y^24 + 60913*y^23 + 261981*y^22 - 865292*y^21 + 865161*y^20 + 1730608*y^19 + 1651223*y^18 + 944081*y^17 + 80422*y^16 - 555516*y^15 - 782673*y^14 - 616850*y^13 - 281134*y^12 + 50690*y^11 + 392197*y^10 + 232437*y^9 + 29331*y^8 - 123822*y^7 - 181683*y^6 - 150660*y^5 - 69255*y^4 + 15309*y^3 + 65610*y^2 + 78732*y + 59049, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049)
 

\( x^{40} - x^{39} - x^{38} + 7 x^{37} - 12 x^{36} - 3 x^{35} + 58 x^{34} - 121 x^{33} + 29 x^{32} + \cdots + 59049 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $40$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 20]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(80991088329663621512136783946706428882352994235065987550082919086927689\) \(\medspace = 11^{36}\cdot 13^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}13^{3/4}\approx 59.253080108324006$
Ramified primes:   \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $40$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(143=11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{143}(1,·)$, $\chi_{143}(131,·)$, $\chi_{143}(5,·)$, $\chi_{143}(129,·)$, $\chi_{143}(8,·)$, $\chi_{143}(138,·)$, $\chi_{143}(12,·)$, $\chi_{143}(14,·)$, $\chi_{143}(18,·)$, $\chi_{143}(21,·)$, $\chi_{143}(25,·)$, $\chi_{143}(27,·)$, $\chi_{143}(31,·)$, $\chi_{143}(34,·)$, $\chi_{143}(38,·)$, $\chi_{143}(40,·)$, $\chi_{143}(135,·)$, $\chi_{143}(47,·)$, $\chi_{143}(51,·)$, $\chi_{143}(53,·)$, $\chi_{143}(57,·)$, $\chi_{143}(60,·)$, $\chi_{143}(64,·)$, $\chi_{143}(70,·)$, $\chi_{143}(73,·)$, $\chi_{143}(79,·)$, $\chi_{143}(83,·)$, $\chi_{143}(142,·)$, $\chi_{143}(86,·)$, $\chi_{143}(90,·)$, $\chi_{143}(92,·)$, $\chi_{143}(96,·)$, $\chi_{143}(103,·)$, $\chi_{143}(105,·)$, $\chi_{143}(109,·)$, $\chi_{143}(112,·)$, $\chi_{143}(116,·)$, $\chi_{143}(118,·)$, $\chi_{143}(122,·)$, $\chi_{143}(125,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{524288}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3}a^{21}+\frac{1}{3}a^{19}+\frac{1}{3}a^{17}+\frac{1}{3}a^{15}+\frac{1}{3}a^{13}+\frac{1}{3}a^{11}+\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{22}+\frac{1}{3}a^{20}+\frac{1}{3}a^{18}+\frac{1}{3}a^{16}+\frac{1}{3}a^{14}+\frac{1}{3}a^{12}+\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{23}-\frac{1}{3}a$, $\frac{1}{3}a^{24}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{25}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{26}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{27}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{28}-\frac{1}{3}a^{6}$, $\frac{1}{3}a^{29}-\frac{1}{3}a^{7}$, $\frac{1}{3}a^{30}-\frac{1}{3}a^{8}$, $\frac{1}{28\!\cdots\!11}a^{31}+\frac{430233146757965}{28\!\cdots\!11}a^{30}-\frac{94968514623833}{941054662112137}a^{29}+\frac{365493912467710}{28\!\cdots\!11}a^{28}+\frac{43140438082871}{28\!\cdots\!11}a^{27}-\frac{381285892441771}{28\!\cdots\!11}a^{26}-\frac{211466688575045}{28\!\cdots\!11}a^{25}+\frac{16706162795647}{941054662112137}a^{24}-\frac{340695333140411}{28\!\cdots\!11}a^{23}-\frac{402605382720475}{28\!\cdots\!11}a^{22}+\frac{12253581349974}{941054662112137}a^{21}-\frac{12\!\cdots\!55}{28\!\cdots\!11}a^{20}-\frac{410205525836438}{941054662112137}a^{19}+\frac{10\!\cdots\!28}{28\!\cdots\!11}a^{18}-\frac{317366510645025}{941054662112137}a^{17}+\frac{616165475948339}{28\!\cdots\!11}a^{16}+\frac{209545029881944}{941054662112137}a^{15}-\frac{288555006427561}{28\!\cdots\!11}a^{14}-\frac{431360881979448}{941054662112137}a^{13}-\frac{285927396804634}{28\!\cdots\!11}a^{12}-\frac{55344201988806}{941054662112137}a^{11}-\frac{749614178558596}{28\!\cdots\!11}a^{10}+\frac{10\!\cdots\!73}{28\!\cdots\!11}a^{9}+\frac{309856538623986}{941054662112137}a^{8}-\frac{368938048779702}{941054662112137}a^{7}-\frac{972862107547289}{28\!\cdots\!11}a^{6}+\frac{52047907539766}{28\!\cdots\!11}a^{5}+\frac{108012949085112}{941054662112137}a^{4}-\frac{999140653506706}{28\!\cdots\!11}a^{3}+\frac{654676925460554}{28\!\cdots\!11}a^{2}-\frac{12\!\cdots\!44}{28\!\cdots\!11}a-\frac{411070585923916}{941054662112137}$, $\frac{1}{84\!\cdots\!33}a^{32}-\frac{1}{84\!\cdots\!33}a^{31}+\frac{752231988664247}{84\!\cdots\!33}a^{30}+\frac{187936101140107}{84\!\cdots\!33}a^{29}+\frac{376921302622601}{28\!\cdots\!11}a^{28}-\frac{440290713942479}{28\!\cdots\!11}a^{27}+\frac{377556750995929}{84\!\cdots\!33}a^{26}+\frac{577106888037014}{84\!\cdots\!33}a^{25}+\frac{12\!\cdots\!15}{84\!\cdots\!33}a^{24}+\frac{210810402651973}{84\!\cdots\!33}a^{23}+\frac{406266784679159}{28\!\cdots\!11}a^{22}+\frac{296347971109042}{84\!\cdots\!33}a^{21}+\frac{908273032407428}{28\!\cdots\!11}a^{20}+\frac{10\!\cdots\!83}{84\!\cdots\!33}a^{19}-\frac{556635670875184}{28\!\cdots\!11}a^{18}+\frac{10\!\cdots\!63}{84\!\cdots\!33}a^{17}-\frac{564793644492793}{28\!\cdots\!11}a^{16}-\frac{18\!\cdots\!71}{84\!\cdots\!33}a^{15}-\frac{762408491091343}{28\!\cdots\!11}a^{14}-\frac{40\!\cdots\!34}{84\!\cdots\!33}a^{13}-\frac{770652887359696}{28\!\cdots\!11}a^{12}-\frac{16\!\cdots\!80}{84\!\cdots\!33}a^{11}+\frac{27\!\cdots\!85}{84\!\cdots\!33}a^{10}+\frac{33\!\cdots\!25}{84\!\cdots\!33}a^{9}+\frac{37\!\cdots\!02}{84\!\cdots\!33}a^{8}+\frac{780613516342441}{28\!\cdots\!11}a^{7}+\frac{94591138384560}{941054662112137}a^{6}+\frac{23\!\cdots\!58}{84\!\cdots\!33}a^{5}-\frac{314118841402330}{84\!\cdots\!33}a^{4}-\frac{23\!\cdots\!73}{84\!\cdots\!33}a^{3}-\frac{15\!\cdots\!99}{84\!\cdots\!33}a^{2}+\frac{243688504093354}{28\!\cdots\!11}a-\frac{57729995407016}{941054662112137}$, $\frac{1}{25\!\cdots\!99}a^{33}-\frac{1}{25\!\cdots\!99}a^{32}-\frac{1}{25\!\cdots\!99}a^{31}-\frac{34\!\cdots\!51}{25\!\cdots\!99}a^{30}+\frac{440976549571676}{84\!\cdots\!33}a^{29}-\frac{934268798305120}{84\!\cdots\!33}a^{28}+\frac{31\!\cdots\!69}{25\!\cdots\!99}a^{27}+\frac{13\!\cdots\!50}{25\!\cdots\!99}a^{26}+\frac{26\!\cdots\!87}{25\!\cdots\!99}a^{25}-\frac{13\!\cdots\!97}{25\!\cdots\!99}a^{24}+\frac{52286695958761}{28\!\cdots\!11}a^{23}-\frac{943066189537343}{25\!\cdots\!99}a^{22}+\frac{125716636638506}{941054662112137}a^{21}-\frac{12\!\cdots\!55}{25\!\cdots\!99}a^{20}-\frac{122315745650420}{941054662112137}a^{19}+\frac{43\!\cdots\!81}{25\!\cdots\!99}a^{18}-\frac{248811696598767}{941054662112137}a^{17}-\frac{33\!\cdots\!47}{25\!\cdots\!99}a^{16}-\frac{255820082845807}{941054662112137}a^{15}-\frac{899883162319397}{25\!\cdots\!99}a^{14}-\frac{138860573481555}{941054662112137}a^{13}-\frac{12\!\cdots\!36}{25\!\cdots\!99}a^{12}+\frac{85\!\cdots\!31}{25\!\cdots\!99}a^{11}+\frac{34\!\cdots\!92}{25\!\cdots\!99}a^{10}-\frac{72\!\cdots\!45}{25\!\cdots\!99}a^{9}+\frac{734863140725407}{28\!\cdots\!11}a^{8}-\frac{38\!\cdots\!85}{84\!\cdots\!33}a^{7}-\frac{73\!\cdots\!95}{25\!\cdots\!99}a^{6}+\frac{10\!\cdots\!28}{25\!\cdots\!99}a^{5}+\frac{62\!\cdots\!17}{25\!\cdots\!99}a^{4}+\frac{24\!\cdots\!11}{25\!\cdots\!99}a^{3}-\frac{30\!\cdots\!93}{84\!\cdots\!33}a^{2}-\frac{12\!\cdots\!88}{28\!\cdots\!11}a+\frac{455973498058521}{941054662112137}$, $\frac{1}{76\!\cdots\!97}a^{34}-\frac{1}{76\!\cdots\!97}a^{33}-\frac{1}{76\!\cdots\!97}a^{32}+\frac{7}{76\!\cdots\!97}a^{31}-\frac{15\!\cdots\!72}{25\!\cdots\!99}a^{30}+\frac{34\!\cdots\!60}{25\!\cdots\!99}a^{29}-\frac{819909757285817}{76\!\cdots\!97}a^{28}+\frac{11\!\cdots\!70}{76\!\cdots\!97}a^{27}-\frac{54\!\cdots\!66}{76\!\cdots\!97}a^{26}-\frac{18\!\cdots\!84}{76\!\cdots\!97}a^{25}+\frac{13\!\cdots\!61}{84\!\cdots\!33}a^{24}-\frac{84\!\cdots\!77}{76\!\cdots\!97}a^{23}-\frac{254413877698817}{28\!\cdots\!11}a^{22}+\frac{18\!\cdots\!64}{76\!\cdots\!97}a^{21}-\frac{406853225327742}{941054662112137}a^{20}+\frac{32\!\cdots\!61}{76\!\cdots\!97}a^{19}-\frac{77389473169735}{941054662112137}a^{18}+\frac{31\!\cdots\!04}{76\!\cdots\!97}a^{17}-\frac{636812522278625}{28\!\cdots\!11}a^{16}-\frac{17\!\cdots\!62}{76\!\cdots\!97}a^{15}-\frac{376529733518418}{941054662112137}a^{14}-\frac{21\!\cdots\!33}{76\!\cdots\!97}a^{13}+\frac{34\!\cdots\!72}{76\!\cdots\!97}a^{12}+\frac{16\!\cdots\!45}{76\!\cdots\!97}a^{11}-\frac{44\!\cdots\!50}{76\!\cdots\!97}a^{10}+\frac{24\!\cdots\!17}{84\!\cdots\!33}a^{9}-\frac{11\!\cdots\!20}{25\!\cdots\!99}a^{8}+\frac{14\!\cdots\!66}{76\!\cdots\!97}a^{7}+\frac{839944406152322}{76\!\cdots\!97}a^{6}+\frac{23\!\cdots\!37}{76\!\cdots\!97}a^{5}+\frac{33\!\cdots\!67}{76\!\cdots\!97}a^{4}-\frac{62\!\cdots\!85}{25\!\cdots\!99}a^{3}+\frac{19\!\cdots\!56}{84\!\cdots\!33}a^{2}+\frac{11\!\cdots\!86}{28\!\cdots\!11}a-\frac{165207747839560}{941054662112137}$, $\frac{1}{22\!\cdots\!91}a^{35}-\frac{1}{22\!\cdots\!91}a^{34}-\frac{1}{22\!\cdots\!91}a^{33}+\frac{7}{22\!\cdots\!91}a^{32}-\frac{4}{76\!\cdots\!97}a^{31}+\frac{91\!\cdots\!22}{76\!\cdots\!97}a^{30}+\frac{11\!\cdots\!77}{22\!\cdots\!91}a^{29}+\frac{98\!\cdots\!19}{22\!\cdots\!91}a^{28}+\frac{18\!\cdots\!30}{22\!\cdots\!91}a^{27}+\frac{16\!\cdots\!39}{22\!\cdots\!91}a^{26}-\frac{16\!\cdots\!06}{25\!\cdots\!99}a^{25}-\frac{34\!\cdots\!81}{22\!\cdots\!91}a^{24}-\frac{10\!\cdots\!57}{84\!\cdots\!33}a^{23}-\frac{13\!\cdots\!32}{22\!\cdots\!91}a^{22}-\frac{100653903134264}{941054662112137}a^{21}+\frac{44\!\cdots\!03}{22\!\cdots\!91}a^{20}+\frac{202973476900999}{941054662112137}a^{19}-\frac{14\!\cdots\!30}{22\!\cdots\!91}a^{18}-\frac{22\!\cdots\!41}{84\!\cdots\!33}a^{17}-\frac{72\!\cdots\!05}{22\!\cdots\!91}a^{16}-\frac{143059985347312}{28\!\cdots\!11}a^{15}-\frac{46\!\cdots\!56}{22\!\cdots\!91}a^{14}+\frac{90\!\cdots\!41}{22\!\cdots\!91}a^{13}-\frac{55\!\cdots\!93}{22\!\cdots\!91}a^{12}-\frac{48\!\cdots\!06}{22\!\cdots\!91}a^{11}-\frac{28\!\cdots\!61}{25\!\cdots\!99}a^{10}+\frac{29\!\cdots\!16}{76\!\cdots\!97}a^{9}+\frac{75\!\cdots\!69}{22\!\cdots\!91}a^{8}-\frac{35\!\cdots\!66}{22\!\cdots\!91}a^{7}-\frac{84\!\cdots\!12}{22\!\cdots\!91}a^{6}-\frac{17\!\cdots\!27}{22\!\cdots\!91}a^{5}-\frac{23\!\cdots\!39}{76\!\cdots\!97}a^{4}+\frac{80\!\cdots\!68}{25\!\cdots\!99}a^{3}-\frac{24\!\cdots\!14}{84\!\cdots\!33}a^{2}+\frac{317549965035292}{28\!\cdots\!11}a-\frac{318416961125790}{941054662112137}$, $\frac{1}{68\!\cdots\!73}a^{36}-\frac{1}{68\!\cdots\!73}a^{35}-\frac{1}{68\!\cdots\!73}a^{34}+\frac{7}{68\!\cdots\!73}a^{33}-\frac{4}{22\!\cdots\!91}a^{32}-\frac{1}{22\!\cdots\!91}a^{31}+\frac{92\!\cdots\!16}{68\!\cdots\!73}a^{30}-\frac{94\!\cdots\!10}{68\!\cdots\!73}a^{29}-\frac{90\!\cdots\!98}{68\!\cdots\!73}a^{28}-\frac{34\!\cdots\!82}{68\!\cdots\!73}a^{27}+\frac{17\!\cdots\!08}{76\!\cdots\!97}a^{26}-\frac{92\!\cdots\!87}{68\!\cdots\!73}a^{25}-\frac{12\!\cdots\!66}{25\!\cdots\!99}a^{24}-\frac{73\!\cdots\!92}{68\!\cdots\!73}a^{23}-\frac{593246134252957}{84\!\cdots\!33}a^{22}+\frac{10\!\cdots\!43}{68\!\cdots\!73}a^{21}-\frac{25\!\cdots\!51}{84\!\cdots\!33}a^{20}+\frac{32\!\cdots\!94}{68\!\cdots\!73}a^{19}-\frac{53\!\cdots\!77}{25\!\cdots\!99}a^{18}-\frac{28\!\cdots\!16}{68\!\cdots\!73}a^{17}-\frac{30\!\cdots\!29}{84\!\cdots\!33}a^{16}-\frac{50\!\cdots\!44}{68\!\cdots\!73}a^{15}-\frac{26\!\cdots\!36}{68\!\cdots\!73}a^{14}+\frac{22\!\cdots\!76}{68\!\cdots\!73}a^{13}+\frac{15\!\cdots\!94}{68\!\cdots\!73}a^{12}-\frac{16\!\cdots\!68}{76\!\cdots\!97}a^{11}+\frac{58\!\cdots\!30}{22\!\cdots\!91}a^{10}+\frac{58\!\cdots\!82}{68\!\cdots\!73}a^{9}+\frac{26\!\cdots\!23}{68\!\cdots\!73}a^{8}-\frac{28\!\cdots\!79}{68\!\cdots\!73}a^{7}+\frac{15\!\cdots\!64}{68\!\cdots\!73}a^{6}-\frac{28\!\cdots\!02}{22\!\cdots\!91}a^{5}+\frac{16\!\cdots\!67}{76\!\cdots\!97}a^{4}+\frac{12\!\cdots\!08}{25\!\cdots\!99}a^{3}-\frac{26\!\cdots\!54}{84\!\cdots\!33}a^{2}+\frac{341492664569656}{28\!\cdots\!11}a-\frac{275412672028124}{941054662112137}$, $\frac{1}{20\!\cdots\!19}a^{37}-\frac{1}{20\!\cdots\!19}a^{36}-\frac{1}{20\!\cdots\!19}a^{35}+\frac{7}{20\!\cdots\!19}a^{34}-\frac{4}{68\!\cdots\!73}a^{33}-\frac{1}{68\!\cdots\!73}a^{32}+\frac{58}{20\!\cdots\!19}a^{31}-\frac{15\!\cdots\!59}{20\!\cdots\!19}a^{30}-\frac{32\!\cdots\!91}{20\!\cdots\!19}a^{29}-\frac{51\!\cdots\!23}{20\!\cdots\!19}a^{28}+\frac{77\!\cdots\!55}{22\!\cdots\!91}a^{27}+\frac{28\!\cdots\!02}{20\!\cdots\!19}a^{26}+\frac{12\!\cdots\!07}{76\!\cdots\!97}a^{25}+\frac{20\!\cdots\!29}{20\!\cdots\!19}a^{24}+\frac{830422676858036}{25\!\cdots\!99}a^{23}-\frac{624884658206024}{20\!\cdots\!19}a^{22}-\frac{39\!\cdots\!39}{25\!\cdots\!99}a^{21}+\frac{65\!\cdots\!57}{20\!\cdots\!19}a^{20}+\frac{33\!\cdots\!67}{76\!\cdots\!97}a^{19}+\frac{23\!\cdots\!52}{20\!\cdots\!19}a^{18}-\frac{66\!\cdots\!64}{25\!\cdots\!99}a^{17}-\frac{32\!\cdots\!74}{20\!\cdots\!19}a^{16}+\frac{88\!\cdots\!18}{20\!\cdots\!19}a^{15}+\frac{10\!\cdots\!76}{20\!\cdots\!19}a^{14}-\frac{43\!\cdots\!37}{20\!\cdots\!19}a^{13}+\frac{93\!\cdots\!40}{22\!\cdots\!91}a^{12}-\frac{19\!\cdots\!85}{68\!\cdots\!73}a^{11}+\frac{25\!\cdots\!16}{20\!\cdots\!19}a^{10}-\frac{60\!\cdots\!12}{20\!\cdots\!19}a^{9}+\frac{43\!\cdots\!76}{20\!\cdots\!19}a^{8}+\frac{91\!\cdots\!54}{20\!\cdots\!19}a^{7}+\frac{21\!\cdots\!03}{68\!\cdots\!73}a^{6}+\frac{73\!\cdots\!56}{22\!\cdots\!91}a^{5}+\frac{25\!\cdots\!66}{76\!\cdots\!97}a^{4}+\frac{40\!\cdots\!64}{25\!\cdots\!99}a^{3}+\frac{14\!\cdots\!09}{84\!\cdots\!33}a^{2}-\frac{276003515974591}{28\!\cdots\!11}a+\frac{365177554088002}{941054662112137}$, $\frac{1}{61\!\cdots\!57}a^{38}-\frac{1}{61\!\cdots\!57}a^{37}-\frac{1}{61\!\cdots\!57}a^{36}+\frac{7}{61\!\cdots\!57}a^{35}-\frac{4}{20\!\cdots\!19}a^{34}-\frac{1}{20\!\cdots\!19}a^{33}+\frac{58}{61\!\cdots\!57}a^{32}-\frac{121}{61\!\cdots\!57}a^{31}+\frac{95\!\cdots\!39}{61\!\cdots\!57}a^{30}+\frac{75\!\cdots\!70}{61\!\cdots\!57}a^{29}-\frac{10\!\cdots\!34}{68\!\cdots\!73}a^{28}-\frac{47\!\cdots\!23}{61\!\cdots\!57}a^{27}+\frac{36\!\cdots\!80}{22\!\cdots\!91}a^{26}+\frac{10\!\cdots\!09}{61\!\cdots\!57}a^{25}+\frac{11\!\cdots\!36}{76\!\cdots\!97}a^{24}+\frac{14\!\cdots\!37}{61\!\cdots\!57}a^{23}-\frac{48\!\cdots\!75}{76\!\cdots\!97}a^{22}-\frac{69\!\cdots\!00}{61\!\cdots\!57}a^{21}-\frac{24\!\cdots\!50}{22\!\cdots\!91}a^{20}-\frac{21\!\cdots\!25}{61\!\cdots\!57}a^{19}-\frac{30\!\cdots\!10}{76\!\cdots\!97}a^{18}+\frac{78\!\cdots\!03}{61\!\cdots\!57}a^{17}-\frac{24\!\cdots\!57}{61\!\cdots\!57}a^{16}-\frac{12\!\cdots\!14}{61\!\cdots\!57}a^{15}+\frac{16\!\cdots\!56}{61\!\cdots\!57}a^{14}+\frac{32\!\cdots\!61}{68\!\cdots\!73}a^{13}+\frac{80\!\cdots\!37}{20\!\cdots\!19}a^{12}+\frac{22\!\cdots\!57}{61\!\cdots\!57}a^{11}-\frac{46\!\cdots\!51}{61\!\cdots\!57}a^{10}+\frac{30\!\cdots\!91}{61\!\cdots\!57}a^{9}+\frac{54\!\cdots\!80}{61\!\cdots\!57}a^{8}+\frac{32\!\cdots\!05}{20\!\cdots\!19}a^{7}-\frac{84\!\cdots\!08}{68\!\cdots\!73}a^{6}+\frac{32\!\cdots\!07}{22\!\cdots\!91}a^{5}+\frac{10\!\cdots\!76}{76\!\cdots\!97}a^{4}-\frac{99\!\cdots\!70}{25\!\cdots\!99}a^{3}-\frac{23\!\cdots\!14}{84\!\cdots\!33}a^{2}-\frac{468644220906539}{28\!\cdots\!11}a+\frac{72692268861993}{941054662112137}$, $\frac{1}{18\!\cdots\!71}a^{39}-\frac{1}{18\!\cdots\!71}a^{38}-\frac{1}{18\!\cdots\!71}a^{37}+\frac{7}{18\!\cdots\!71}a^{36}-\frac{4}{61\!\cdots\!57}a^{35}-\frac{1}{61\!\cdots\!57}a^{34}+\frac{58}{18\!\cdots\!71}a^{33}-\frac{121}{18\!\cdots\!71}a^{32}+\frac{29}{18\!\cdots\!71}a^{31}+\frac{27\!\cdots\!54}{18\!\cdots\!71}a^{30}+\frac{22\!\cdots\!38}{20\!\cdots\!19}a^{29}-\frac{78\!\cdots\!60}{18\!\cdots\!71}a^{28}-\frac{77\!\cdots\!85}{68\!\cdots\!73}a^{27}-\frac{15\!\cdots\!93}{18\!\cdots\!71}a^{26}+\frac{34\!\cdots\!54}{22\!\cdots\!91}a^{25}+\frac{47\!\cdots\!69}{18\!\cdots\!71}a^{24}+\frac{23\!\cdots\!13}{22\!\cdots\!91}a^{23}+\frac{23\!\cdots\!70}{18\!\cdots\!71}a^{22}-\frac{10\!\cdots\!95}{68\!\cdots\!73}a^{21}-\frac{22\!\cdots\!70}{18\!\cdots\!71}a^{20}-\frac{10\!\cdots\!10}{22\!\cdots\!91}a^{19}+\frac{69\!\cdots\!64}{18\!\cdots\!71}a^{18}-\frac{41\!\cdots\!67}{18\!\cdots\!71}a^{17}+\frac{16\!\cdots\!51}{18\!\cdots\!71}a^{16}+\frac{34\!\cdots\!56}{18\!\cdots\!71}a^{15}-\frac{82\!\cdots\!64}{20\!\cdots\!19}a^{14}+\frac{44\!\cdots\!66}{61\!\cdots\!57}a^{13}+\frac{35\!\cdots\!54}{18\!\cdots\!71}a^{12}-\frac{90\!\cdots\!80}{18\!\cdots\!71}a^{11}-\frac{74\!\cdots\!50}{18\!\cdots\!71}a^{10}-\frac{11\!\cdots\!10}{18\!\cdots\!71}a^{9}+\frac{26\!\cdots\!40}{61\!\cdots\!57}a^{8}+\frac{10\!\cdots\!02}{20\!\cdots\!19}a^{7}+\frac{21\!\cdots\!70}{68\!\cdots\!73}a^{6}-\frac{79\!\cdots\!27}{22\!\cdots\!91}a^{5}+\frac{26\!\cdots\!34}{76\!\cdots\!97}a^{4}+\frac{26\!\cdots\!09}{25\!\cdots\!99}a^{3}+\frac{15\!\cdots\!19}{84\!\cdots\!33}a^{2}+\frac{13\!\cdots\!57}{28\!\cdots\!11}a+\frac{144441030578683}{941054662112137}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{1525}$, which has order $1525$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{6179798381201}{2058086546039243619} a^{39} - \frac{6179798381201}{2058086546039243619} a^{38} + \frac{43258588668407}{2058086546039243619} a^{37} - \frac{24719193524804}{686028848679747873} a^{36} - \frac{6179798381201}{686028848679747873} a^{35} + \frac{358428306109658}{2058086546039243619} a^{34} - \frac{747755604125321}{2058086546039243619} a^{33} + \frac{179214153054829}{2058086546039243619} a^{32} + \frac{2805628465065254}{2058086546039243619} a^{31} - \frac{803373789556130}{228676282893249291} a^{30} + \frac{1526289632852126}{686028848679747873} a^{29} + \frac{1025846531279366}{76225427631083097} a^{28} - \frac{59931684700887298}{2058086546039243619} a^{27} + \frac{197753548198432}{25408475877027699} a^{26} + \frac{222293527570181171}{2058086546039243619} a^{25} - \frac{7125307533524753}{25408475877027699} a^{24} + \frac{376430058794096513}{2058086546039243619} a^{23} + \frac{59962583692793303}{76225427631083097} a^{22} - \frac{5347330100866175692}{2058086546039243619} a^{21} + \frac{66006426509607881}{25408475877027699} a^{20} + \frac{10694808516893500208}{2058086546039243619} a^{19} - \frac{588070668286187429}{25408475877027699} a^{18} + \frac{5834230235522621281}{2058086546039243619} a^{17} + \frac{496991745412946822}{2058086546039243619} a^{16} - \frac{381441875281250524}{228676282893249291} a^{15} - \frac{1612253779469910091}{686028848679747873} a^{14} - \frac{3812008631443836850}{2058086546039243619} a^{13} - \frac{1737351438100561934}{2058086546039243619} a^{12} + \frac{313253979943078690}{2058086546039243619} a^{11} + \frac{2423698385711888597}{2058086546039243619} a^{10} + \frac{478804598777072279}{686028848679747873} a^{9} + \frac{20139962924334059}{228676282893249291} a^{8} + \frac{2327256198942633311}{2058086546039243619} a^{7} - \frac{13861287769033843}{25408475877027699} a^{6} - \frac{3831474996344620}{8469491959009233} a^{5} - \frac{587080846214095}{2823163986336411} a^{4} + \frac{43258588668407}{941054662112137} a^{3} + \frac{185393951436030}{941054662112137} a^{2} + \frac{222472741723236}{941054662112137} a + \frac{166854556292427}{941054662112137} \)  (order $22$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{6179798381201}{20\!\cdots\!19}a^{39}+\frac{6179798381201}{20\!\cdots\!19}a^{38}-\frac{43258588668407}{20\!\cdots\!19}a^{37}+\frac{23820439604081}{68\!\cdots\!73}a^{36}+\frac{6179798381201}{68\!\cdots\!73}a^{35}-\frac{358428306109658}{20\!\cdots\!19}a^{34}+\frac{747755604125321}{20\!\cdots\!19}a^{33}-\frac{179214153054829}{20\!\cdots\!19}a^{32}-\frac{28\!\cdots\!54}{20\!\cdots\!19}a^{31}+\frac{803373789556130}{22\!\cdots\!91}a^{30}-\frac{15\!\cdots\!26}{68\!\cdots\!73}a^{29}-\frac{10\!\cdots\!66}{76\!\cdots\!97}a^{28}+\frac{59\!\cdots\!98}{20\!\cdots\!19}a^{27}-\frac{197753548198432}{25\!\cdots\!99}a^{26}-\frac{21\!\cdots\!98}{20\!\cdots\!19}a^{25}+\frac{71\!\cdots\!53}{25\!\cdots\!99}a^{24}-\frac{37\!\cdots\!13}{20\!\cdots\!19}a^{23}-\frac{59\!\cdots\!03}{76\!\cdots\!97}a^{22}+\frac{53\!\cdots\!92}{20\!\cdots\!19}a^{21}-\frac{66\!\cdots\!81}{25\!\cdots\!99}a^{20}-\frac{10\!\cdots\!08}{20\!\cdots\!19}a^{19}+\frac{58\!\cdots\!29}{25\!\cdots\!99}a^{18}-\frac{58\!\cdots\!81}{20\!\cdots\!19}a^{17}-\frac{49\!\cdots\!22}{20\!\cdots\!19}a^{16}+\frac{38\!\cdots\!24}{22\!\cdots\!91}a^{15}-\frac{67\!\cdots\!46}{68\!\cdots\!73}a^{14}+\frac{38\!\cdots\!50}{20\!\cdots\!19}a^{13}+\frac{17\!\cdots\!34}{20\!\cdots\!19}a^{12}-\frac{31\!\cdots\!90}{20\!\cdots\!19}a^{11}-\frac{24\!\cdots\!97}{20\!\cdots\!19}a^{10}-\frac{47\!\cdots\!79}{68\!\cdots\!73}a^{9}-\frac{20\!\cdots\!59}{22\!\cdots\!91}a^{8}-\frac{23\!\cdots\!11}{20\!\cdots\!19}a^{7}+\frac{13\!\cdots\!43}{25\!\cdots\!99}a^{6}+\frac{38\!\cdots\!20}{84\!\cdots\!33}a^{5}+\frac{587080846214095}{28\!\cdots\!11}a^{4}-\frac{30\!\cdots\!08}{25\!\cdots\!99}a^{3}-\frac{185393951436030}{941054662112137}a^{2}-\frac{222472741723236}{941054662112137}a-\frac{166854556292427}{941054662112137}$, $\frac{10078349632}{84\!\cdots\!33}a^{35}-\frac{11630177382317}{84\!\cdots\!33}a^{24}+\frac{94\!\cdots\!18}{84\!\cdots\!33}a^{13}-\frac{79\!\cdots\!89}{84\!\cdots\!33}a^{2}-1$, $\frac{64907074448632}{61\!\cdots\!57}a^{39}-\frac{27924321258527}{20\!\cdots\!19}a^{38}-\frac{44515466905901}{61\!\cdots\!57}a^{37}+\frac{156721617911563}{20\!\cdots\!19}a^{36}-\frac{889592221543439}{61\!\cdots\!57}a^{35}-\frac{1645744071572}{20\!\cdots\!19}a^{34}+\frac{38\!\cdots\!51}{61\!\cdots\!57}a^{33}-\frac{29\!\cdots\!33}{20\!\cdots\!19}a^{32}+\frac{37\!\cdots\!62}{61\!\cdots\!57}a^{31}+\frac{96\!\cdots\!81}{20\!\cdots\!19}a^{30}-\frac{83\!\cdots\!50}{61\!\cdots\!57}a^{29}-\frac{83\!\cdots\!66}{61\!\cdots\!57}a^{28}+\frac{30\!\cdots\!78}{61\!\cdots\!57}a^{27}-\frac{70\!\cdots\!08}{61\!\cdots\!57}a^{26}+\frac{32\!\cdots\!14}{61\!\cdots\!57}a^{25}+\frac{22\!\cdots\!92}{61\!\cdots\!57}a^{24}-\frac{66\!\cdots\!91}{61\!\cdots\!57}a^{23}+\frac{54\!\cdots\!61}{61\!\cdots\!57}a^{22}+\frac{16\!\cdots\!60}{61\!\cdots\!57}a^{21}-\frac{60\!\cdots\!99}{61\!\cdots\!57}a^{20}+\frac{69\!\cdots\!32}{61\!\cdots\!57}a^{19}+\frac{98\!\cdots\!91}{61\!\cdots\!57}a^{18}+\frac{26\!\cdots\!72}{20\!\cdots\!19}a^{17}+\frac{66\!\cdots\!50}{61\!\cdots\!57}a^{16}+\frac{11\!\cdots\!48}{20\!\cdots\!19}a^{15}-\frac{37\!\cdots\!42}{61\!\cdots\!57}a^{14}-\frac{14\!\cdots\!32}{20\!\cdots\!19}a^{13}-\frac{27\!\cdots\!55}{61\!\cdots\!57}a^{12}-\frac{28\!\cdots\!46}{20\!\cdots\!19}a^{11}-\frac{17\!\cdots\!67}{61\!\cdots\!57}a^{10}-\frac{29\!\cdots\!21}{20\!\cdots\!19}a^{9}+\frac{88\!\cdots\!79}{61\!\cdots\!57}a^{8}-\frac{59\!\cdots\!71}{20\!\cdots\!19}a^{7}-\frac{94\!\cdots\!91}{68\!\cdots\!73}a^{6}+\frac{26\!\cdots\!80}{25\!\cdots\!99}a^{5}+\frac{30\!\cdots\!21}{84\!\cdots\!33}a^{4}-\frac{86\!\cdots\!20}{25\!\cdots\!99}a^{3}+\frac{28\!\cdots\!47}{84\!\cdots\!33}a^{2}+\frac{18\!\cdots\!05}{28\!\cdots\!11}a-\frac{320323094671203}{941054662112137}$, $\frac{33287182249}{25\!\cdots\!99}a^{36}+\frac{10078349632}{84\!\cdots\!33}a^{35}+\frac{1797934402}{28\!\cdots\!11}a^{34}-\frac{38409202487033}{25\!\cdots\!99}a^{25}-\frac{11630177382317}{84\!\cdots\!33}a^{24}-\frac{2075101567472}{28\!\cdots\!11}a^{23}+\frac{31\!\cdots\!31}{25\!\cdots\!99}a^{14}+\frac{94\!\cdots\!18}{84\!\cdots\!33}a^{13}+\frac{16\!\cdots\!79}{28\!\cdots\!11}a^{12}+\frac{18\!\cdots\!19}{25\!\cdots\!99}a^{3}-\frac{79\!\cdots\!89}{84\!\cdots\!33}a^{2}-\frac{35\!\cdots\!45}{28\!\cdots\!11}a-1$, $\frac{10078349632}{25\!\cdots\!99}a^{36}-\frac{11630177382317}{25\!\cdots\!99}a^{25}+\frac{94\!\cdots\!18}{25\!\cdots\!99}a^{14}+\frac{559133391875444}{25\!\cdots\!99}a^{3}$, $\frac{7836896475868}{18\!\cdots\!71}a^{39}-\frac{366558031322503}{18\!\cdots\!71}a^{38}+\frac{10\!\cdots\!38}{18\!\cdots\!71}a^{37}-\frac{495403345416740}{18\!\cdots\!71}a^{36}-\frac{10\!\cdots\!63}{61\!\cdots\!57}a^{35}+\frac{31\!\cdots\!74}{61\!\cdots\!57}a^{34}-\frac{84\!\cdots\!91}{18\!\cdots\!71}a^{33}-\frac{20\!\cdots\!24}{18\!\cdots\!71}a^{32}+\frac{84\!\cdots\!98}{18\!\cdots\!71}a^{31}-\frac{10\!\cdots\!01}{18\!\cdots\!71}a^{30}-\frac{40\!\cdots\!23}{61\!\cdots\!57}a^{29}+\frac{72\!\cdots\!90}{18\!\cdots\!71}a^{28}-\frac{24\!\cdots\!94}{61\!\cdots\!57}a^{27}-\frac{16\!\cdots\!31}{18\!\cdots\!71}a^{26}+\frac{22\!\cdots\!84}{61\!\cdots\!57}a^{25}-\frac{84\!\cdots\!26}{18\!\cdots\!71}a^{24}-\frac{31\!\cdots\!83}{61\!\cdots\!57}a^{23}+\frac{58\!\cdots\!64}{18\!\cdots\!71}a^{22}-\frac{31\!\cdots\!55}{61\!\cdots\!57}a^{21}-\frac{35\!\cdots\!53}{18\!\cdots\!71}a^{20}+\frac{16\!\cdots\!76}{61\!\cdots\!57}a^{19}-\frac{96\!\cdots\!95}{18\!\cdots\!71}a^{18}+\frac{20\!\cdots\!29}{18\!\cdots\!71}a^{17}+\frac{40\!\cdots\!30}{18\!\cdots\!71}a^{16}+\frac{12\!\cdots\!98}{18\!\cdots\!71}a^{15}+\frac{15\!\cdots\!17}{61\!\cdots\!57}a^{14}-\frac{10\!\cdots\!36}{61\!\cdots\!57}a^{13}-\frac{34\!\cdots\!50}{18\!\cdots\!71}a^{12}-\frac{87\!\cdots\!63}{18\!\cdots\!71}a^{11}-\frac{10\!\cdots\!25}{18\!\cdots\!71}a^{10}+\frac{23\!\cdots\!11}{18\!\cdots\!71}a^{9}+\frac{88\!\cdots\!89}{20\!\cdots\!19}a^{8}+\frac{96\!\cdots\!40}{20\!\cdots\!19}a^{7}+\frac{25\!\cdots\!60}{68\!\cdots\!73}a^{6}-\frac{15\!\cdots\!96}{22\!\cdots\!91}a^{5}-\frac{89\!\cdots\!67}{76\!\cdots\!97}a^{4}-\frac{22\!\cdots\!45}{25\!\cdots\!99}a^{3}+\frac{18\!\cdots\!79}{28\!\cdots\!11}a^{2}+\frac{82\!\cdots\!88}{28\!\cdots\!11}a-\frac{499956023322030}{941054662112137}$, $\frac{67469795920537}{61\!\cdots\!57}a^{39}-\frac{7011847319672}{68\!\cdots\!73}a^{38}-\frac{177481940276477}{61\!\cdots\!57}a^{37}+\frac{231695544806167}{20\!\cdots\!19}a^{36}-\frac{824402207249525}{61\!\cdots\!57}a^{35}-\frac{361384744360288}{20\!\cdots\!19}a^{34}+\frac{60\!\cdots\!14}{61\!\cdots\!57}a^{33}-\frac{10\!\cdots\!54}{68\!\cdots\!73}a^{32}-\frac{46\!\cdots\!00}{61\!\cdots\!57}a^{31}+\frac{16\!\cdots\!51}{20\!\cdots\!19}a^{30}-\frac{96\!\cdots\!84}{61\!\cdots\!57}a^{29}-\frac{72\!\cdots\!92}{61\!\cdots\!57}a^{28}+\frac{47\!\cdots\!80}{61\!\cdots\!57}a^{27}-\frac{75\!\cdots\!27}{61\!\cdots\!57}a^{26}-\frac{830764876716970}{14\!\cdots\!03}a^{25}+\frac{40\!\cdots\!19}{61\!\cdots\!57}a^{24}-\frac{77\!\cdots\!66}{61\!\cdots\!57}a^{23}+\frac{57\!\cdots\!18}{61\!\cdots\!57}a^{22}+\frac{32\!\cdots\!36}{61\!\cdots\!57}a^{21}-\frac{76\!\cdots\!82}{61\!\cdots\!57}a^{20}+\frac{37\!\cdots\!08}{61\!\cdots\!57}a^{19}+\frac{24\!\cdots\!38}{61\!\cdots\!57}a^{18}-\frac{96\!\cdots\!82}{68\!\cdots\!73}a^{17}+\frac{25\!\cdots\!92}{61\!\cdots\!57}a^{16}+\frac{45\!\cdots\!69}{20\!\cdots\!19}a^{15}+\frac{10\!\cdots\!51}{61\!\cdots\!57}a^{14}+\frac{19\!\cdots\!62}{20\!\cdots\!19}a^{13}-\frac{59\!\cdots\!26}{61\!\cdots\!57}a^{12}-\frac{34\!\cdots\!04}{22\!\cdots\!91}a^{11}-\frac{25\!\cdots\!58}{61\!\cdots\!57}a^{10}-\frac{43\!\cdots\!58}{20\!\cdots\!19}a^{9}+\frac{83\!\cdots\!86}{61\!\cdots\!57}a^{8}-\frac{29\!\cdots\!82}{20\!\cdots\!19}a^{7}+\frac{19\!\cdots\!37}{68\!\cdots\!73}a^{6}-\frac{25\!\cdots\!61}{76\!\cdots\!97}a^{5}-\frac{11\!\cdots\!12}{25\!\cdots\!99}a^{4}-\frac{31\!\cdots\!55}{84\!\cdots\!33}a^{3}-\frac{91\!\cdots\!33}{84\!\cdots\!33}a^{2}+\frac{47\!\cdots\!42}{28\!\cdots\!11}a+\frac{453877011148507}{941054662112137}$, $\frac{29809319405144}{18\!\cdots\!71}a^{39}-\frac{239647867509149}{18\!\cdots\!71}a^{38}+\frac{346806140025022}{18\!\cdots\!71}a^{37}+\frac{257267676781496}{18\!\cdots\!71}a^{36}-\frac{228831012672884}{20\!\cdots\!19}a^{35}+\frac{12\!\cdots\!05}{61\!\cdots\!57}a^{34}+\frac{544287840160331}{18\!\cdots\!71}a^{33}-\frac{16\!\cdots\!29}{18\!\cdots\!71}a^{32}+\frac{36\!\cdots\!14}{18\!\cdots\!71}a^{31}-\frac{11\!\cdots\!42}{18\!\cdots\!71}a^{30}-\frac{43\!\cdots\!18}{61\!\cdots\!57}a^{29}+\frac{31\!\cdots\!22}{18\!\cdots\!71}a^{28}+\frac{11\!\cdots\!34}{61\!\cdots\!57}a^{27}-\frac{13\!\cdots\!29}{18\!\cdots\!71}a^{26}+\frac{96\!\cdots\!10}{61\!\cdots\!57}a^{25}-\frac{96\!\cdots\!66}{18\!\cdots\!71}a^{24}-\frac{34\!\cdots\!19}{61\!\cdots\!57}a^{23}+\frac{27\!\cdots\!26}{18\!\cdots\!71}a^{22}-\frac{66\!\cdots\!50}{61\!\cdots\!57}a^{21}-\frac{73\!\cdots\!34}{18\!\cdots\!71}a^{20}+\frac{85\!\cdots\!72}{61\!\cdots\!57}a^{19}-\frac{27\!\cdots\!17}{18\!\cdots\!71}a^{18}-\frac{19\!\cdots\!08}{18\!\cdots\!71}a^{17}+\frac{17\!\cdots\!02}{18\!\cdots\!71}a^{16}+\frac{87\!\cdots\!59}{18\!\cdots\!71}a^{15}-\frac{15\!\cdots\!93}{61\!\cdots\!57}a^{14}-\frac{11\!\cdots\!88}{61\!\cdots\!57}a^{13}+\frac{10\!\cdots\!62}{18\!\cdots\!71}a^{12}+\frac{65\!\cdots\!37}{18\!\cdots\!71}a^{11}+\frac{22\!\cdots\!58}{18\!\cdots\!71}a^{10}-\frac{72\!\cdots\!19}{18\!\cdots\!71}a^{9}+\frac{19\!\cdots\!01}{61\!\cdots\!57}a^{8}+\frac{37\!\cdots\!01}{68\!\cdots\!73}a^{7}+\frac{31\!\cdots\!17}{22\!\cdots\!91}a^{6}-\frac{28\!\cdots\!40}{22\!\cdots\!91}a^{5}+\frac{10\!\cdots\!57}{76\!\cdots\!97}a^{4}+\frac{963588042056491}{84\!\cdots\!33}a^{3}+\frac{695457699495067}{28\!\cdots\!11}a^{2}-\frac{29\!\cdots\!95}{28\!\cdots\!11}a+\frac{164760532783959}{941054662112137}$, $\frac{57171730152074}{18\!\cdots\!71}a^{39}+\frac{46188960844714}{18\!\cdots\!71}a^{38}-\frac{75209910132797}{18\!\cdots\!71}a^{37}+\frac{27146821571897}{18\!\cdots\!71}a^{36}+\frac{107259992693876}{61\!\cdots\!57}a^{35}-\frac{252555619585742}{61\!\cdots\!57}a^{34}+\frac{350585514904268}{18\!\cdots\!71}a^{33}+\frac{24\!\cdots\!63}{18\!\cdots\!71}a^{32}-\frac{71\!\cdots\!84}{18\!\cdots\!71}a^{31}+\frac{59\!\cdots\!56}{18\!\cdots\!71}a^{30}+\frac{57\!\cdots\!12}{61\!\cdots\!57}a^{29}-\frac{13\!\cdots\!80}{18\!\cdots\!71}a^{28}+\frac{77\!\cdots\!48}{61\!\cdots\!57}a^{27}+\frac{19\!\cdots\!03}{18\!\cdots\!71}a^{26}-\frac{20\!\cdots\!43}{61\!\cdots\!57}a^{25}+\frac{49\!\cdots\!08}{18\!\cdots\!71}a^{24}+\frac{44\!\cdots\!44}{61\!\cdots\!57}a^{23}-\frac{52\!\cdots\!29}{18\!\cdots\!71}a^{22}+\frac{20\!\cdots\!59}{61\!\cdots\!57}a^{21}+\frac{81\!\cdots\!71}{18\!\cdots\!71}a^{20}-\frac{15\!\cdots\!16}{61\!\cdots\!57}a^{19}+\frac{69\!\cdots\!64}{18\!\cdots\!71}a^{18}+\frac{57\!\cdots\!45}{18\!\cdots\!71}a^{17}+\frac{51\!\cdots\!88}{18\!\cdots\!71}a^{16}+\frac{20\!\cdots\!04}{18\!\cdots\!71}a^{15}+\frac{75\!\cdots\!89}{61\!\cdots\!57}a^{14}-\frac{13\!\cdots\!28}{61\!\cdots\!57}a^{13}+\frac{56\!\cdots\!87}{18\!\cdots\!71}a^{12}-\frac{40\!\cdots\!51}{18\!\cdots\!71}a^{11}-\frac{70\!\cdots\!16}{18\!\cdots\!71}a^{10}+\frac{13\!\cdots\!44}{18\!\cdots\!71}a^{9}+\frac{97\!\cdots\!04}{68\!\cdots\!73}a^{8}+\frac{18\!\cdots\!48}{22\!\cdots\!91}a^{7}-\frac{25\!\cdots\!95}{68\!\cdots\!73}a^{6}+\frac{10\!\cdots\!65}{76\!\cdots\!97}a^{5}-\frac{85\!\cdots\!28}{76\!\cdots\!97}a^{4}-\frac{11\!\cdots\!41}{25\!\cdots\!99}a^{3}-\frac{210296905242200}{941054662112137}a^{2}-\frac{33\!\cdots\!49}{28\!\cdots\!11}a+\frac{527933595383812}{941054662112137}$, $\frac{131459892968836}{18\!\cdots\!71}a^{39}-\frac{122308222770784}{18\!\cdots\!71}a^{38}-\frac{131459892968836}{18\!\cdots\!71}a^{37}+\frac{929791372877917}{18\!\cdots\!71}a^{36}-\frac{525839571875344}{61\!\cdots\!57}a^{35}-\frac{131459892968836}{61\!\cdots\!57}a^{34}+\frac{76\!\cdots\!88}{18\!\cdots\!71}a^{33}-\frac{15\!\cdots\!27}{18\!\cdots\!71}a^{32}+\frac{38\!\cdots\!44}{18\!\cdots\!71}a^{31}+\frac{59\!\cdots\!44}{18\!\cdots\!71}a^{30}-\frac{17\!\cdots\!80}{20\!\cdots\!19}a^{29}-\frac{54\!\cdots\!68}{18\!\cdots\!71}a^{28}+\frac{21\!\cdots\!75}{68\!\cdots\!73}a^{27}-\frac{12\!\cdots\!28}{18\!\cdots\!71}a^{26}+\frac{40\!\cdots\!61}{22\!\cdots\!91}a^{25}+\frac{47\!\cdots\!56}{18\!\cdots\!71}a^{24}-\frac{15\!\cdots\!08}{22\!\cdots\!91}a^{23}+\frac{80\!\cdots\!68}{18\!\cdots\!71}a^{22}+\frac{12\!\cdots\!65}{68\!\cdots\!73}a^{21}-\frac{11\!\cdots\!12}{18\!\cdots\!71}a^{20}+\frac{14\!\cdots\!16}{22\!\cdots\!91}a^{19}+\frac{22\!\cdots\!88}{18\!\cdots\!71}a^{18}+\frac{21\!\cdots\!28}{18\!\cdots\!71}a^{17}+\frac{20\!\cdots\!57}{18\!\cdots\!71}a^{16}+\frac{10\!\cdots\!92}{18\!\cdots\!71}a^{15}+\frac{18\!\cdots\!31}{20\!\cdots\!19}a^{14}-\frac{34\!\cdots\!76}{61\!\cdots\!57}a^{13}-\frac{81\!\cdots\!00}{18\!\cdots\!71}a^{12}-\frac{36\!\cdots\!24}{18\!\cdots\!71}a^{11}-\frac{70\!\cdots\!31}{18\!\cdots\!71}a^{10}+\frac{51\!\cdots\!92}{18\!\cdots\!71}a^{9}+\frac{10\!\cdots\!44}{61\!\cdots\!57}a^{8}+\frac{42\!\cdots\!24}{20\!\cdots\!19}a^{7}-\frac{60\!\cdots\!96}{68\!\cdots\!73}a^{6}-\frac{90\!\cdots\!06}{22\!\cdots\!91}a^{5}-\frac{81\!\cdots\!20}{76\!\cdots\!97}a^{4}+\frac{13\!\cdots\!10}{25\!\cdots\!99}a^{3}+\frac{920219250781852}{84\!\cdots\!33}a^{2}+\frac{41\!\cdots\!71}{28\!\cdots\!11}a+\frac{525839571875344}{941054662112137}$, $\frac{2631863199031}{18\!\cdots\!71}a^{39}+\frac{101031491923001}{18\!\cdots\!71}a^{38}-\frac{445437022438372}{18\!\cdots\!71}a^{37}+\frac{324709368350398}{18\!\cdots\!71}a^{36}+\frac{429645843244186}{61\!\cdots\!57}a^{35}-\frac{14\!\cdots\!46}{61\!\cdots\!57}a^{34}+\frac{41\!\cdots\!46}{18\!\cdots\!71}a^{33}+\frac{84\!\cdots\!31}{18\!\cdots\!71}a^{32}-\frac{37\!\cdots\!56}{18\!\cdots\!71}a^{31}+\frac{49\!\cdots\!85}{18\!\cdots\!71}a^{30}+\frac{15\!\cdots\!36}{61\!\cdots\!57}a^{29}-\frac{32\!\cdots\!32}{18\!\cdots\!71}a^{28}+\frac{14\!\cdots\!76}{61\!\cdots\!57}a^{27}+\frac{65\!\cdots\!98}{18\!\cdots\!71}a^{26}-\frac{10\!\cdots\!16}{61\!\cdots\!57}a^{25}+\frac{40\!\cdots\!43}{18\!\cdots\!71}a^{24}+\frac{12\!\cdots\!14}{61\!\cdots\!57}a^{23}-\frac{25\!\cdots\!86}{18\!\cdots\!71}a^{22}+\frac{14\!\cdots\!49}{61\!\cdots\!57}a^{21}+\frac{10\!\cdots\!34}{18\!\cdots\!71}a^{20}-\frac{69\!\cdots\!76}{61\!\cdots\!57}a^{19}+\frac{43\!\cdots\!13}{18\!\cdots\!71}a^{18}-\frac{84\!\cdots\!91}{18\!\cdots\!71}a^{17}-\frac{69\!\cdots\!22}{18\!\cdots\!71}a^{16}+\frac{76\!\cdots\!31}{18\!\cdots\!71}a^{15}+\frac{10\!\cdots\!64}{61\!\cdots\!57}a^{14}+\frac{21\!\cdots\!70}{61\!\cdots\!57}a^{13}+\frac{20\!\cdots\!59}{18\!\cdots\!71}a^{12}-\frac{14\!\cdots\!00}{18\!\cdots\!71}a^{11}-\frac{42\!\cdots\!57}{18\!\cdots\!71}a^{10}+\frac{62\!\cdots\!14}{18\!\cdots\!71}a^{9}+\frac{21\!\cdots\!86}{20\!\cdots\!19}a^{8}-\frac{14\!\cdots\!75}{20\!\cdots\!19}a^{7}+\frac{26\!\cdots\!78}{22\!\cdots\!91}a^{6}+\frac{10\!\cdots\!41}{22\!\cdots\!91}a^{5}+\frac{75\!\cdots\!80}{25\!\cdots\!99}a^{4}-\frac{33\!\cdots\!92}{25\!\cdots\!99}a^{3}-\frac{13\!\cdots\!75}{28\!\cdots\!11}a^{2}-\frac{437541432841279}{941054662112137}a-\frac{292571576293863}{941054662112137}$, $\frac{234143765540830}{18\!\cdots\!71}a^{39}-\frac{508524511018078}{18\!\cdots\!71}a^{38}-\frac{169973081820397}{18\!\cdots\!71}a^{37}+\frac{22\!\cdots\!68}{18\!\cdots\!71}a^{36}-\frac{14\!\cdots\!90}{61\!\cdots\!57}a^{35}+\frac{334290027928220}{61\!\cdots\!57}a^{34}+\frac{17\!\cdots\!70}{18\!\cdots\!71}a^{33}-\frac{43\!\cdots\!61}{18\!\cdots\!71}a^{32}+\frac{26\!\cdots\!26}{18\!\cdots\!71}a^{31}+\frac{12\!\cdots\!82}{18\!\cdots\!71}a^{30}-\frac{15\!\cdots\!42}{68\!\cdots\!73}a^{29}+\frac{12\!\cdots\!63}{18\!\cdots\!71}a^{28}+\frac{15\!\cdots\!96}{20\!\cdots\!19}a^{27}-\frac{34\!\cdots\!83}{18\!\cdots\!71}a^{26}+\frac{24\!\cdots\!41}{20\!\cdots\!19}a^{25}+\frac{99\!\cdots\!40}{18\!\cdots\!71}a^{24}-\frac{36\!\cdots\!03}{20\!\cdots\!19}a^{23}+\frac{31\!\cdots\!42}{18\!\cdots\!71}a^{22}+\frac{73\!\cdots\!90}{20\!\cdots\!19}a^{21}-\frac{28\!\cdots\!16}{18\!\cdots\!71}a^{20}+\frac{42\!\cdots\!49}{20\!\cdots\!19}a^{19}+\frac{36\!\cdots\!36}{18\!\cdots\!71}a^{18}-\frac{29\!\cdots\!47}{18\!\cdots\!71}a^{17}-\frac{60\!\cdots\!23}{18\!\cdots\!71}a^{16}-\frac{44\!\cdots\!72}{18\!\cdots\!71}a^{15}+\frac{13\!\cdots\!86}{20\!\cdots\!19}a^{14}+\frac{12\!\cdots\!93}{61\!\cdots\!57}a^{13}+\frac{19\!\cdots\!53}{18\!\cdots\!71}a^{12}+\frac{13\!\cdots\!25}{18\!\cdots\!71}a^{11}-\frac{11\!\cdots\!28}{18\!\cdots\!71}a^{10}+\frac{28\!\cdots\!69}{18\!\cdots\!71}a^{9}+\frac{23\!\cdots\!87}{61\!\cdots\!57}a^{8}-\frac{30\!\cdots\!37}{20\!\cdots\!19}a^{7}-\frac{30\!\cdots\!22}{68\!\cdots\!73}a^{6}-\frac{13\!\cdots\!42}{22\!\cdots\!91}a^{5}+\frac{96\!\cdots\!13}{25\!\cdots\!99}a^{4}+\frac{90\!\cdots\!69}{25\!\cdots\!99}a^{3}+\frac{82\!\cdots\!97}{84\!\cdots\!33}a^{2}-\frac{57\!\cdots\!66}{28\!\cdots\!11}a-\frac{15\!\cdots\!70}{941054662112137}$, $\frac{180682217065553}{18\!\cdots\!71}a^{39}-\frac{212296569505682}{18\!\cdots\!71}a^{38}-\frac{182931532056653}{18\!\cdots\!71}a^{37}+\frac{14\!\cdots\!74}{18\!\cdots\!71}a^{36}-\frac{793637047833344}{61\!\cdots\!57}a^{35}-\frac{198192712211954}{61\!\cdots\!57}a^{34}+\frac{11\!\cdots\!52}{18\!\cdots\!71}a^{33}-\frac{24\!\cdots\!85}{18\!\cdots\!71}a^{32}+\frac{57\!\cdots\!64}{18\!\cdots\!71}a^{31}+\frac{90\!\cdots\!72}{18\!\cdots\!71}a^{30}-\frac{25\!\cdots\!62}{20\!\cdots\!19}a^{29}-\frac{60\!\cdots\!48}{18\!\cdots\!71}a^{28}+\frac{33\!\cdots\!21}{68\!\cdots\!73}a^{27}-\frac{19\!\cdots\!23}{18\!\cdots\!71}a^{26}+\frac{18\!\cdots\!75}{68\!\cdots\!73}a^{25}+\frac{71\!\cdots\!28}{18\!\cdots\!71}a^{24}-\frac{69\!\cdots\!20}{68\!\cdots\!73}a^{23}+\frac{12\!\cdots\!14}{18\!\cdots\!71}a^{22}+\frac{19\!\cdots\!99}{68\!\cdots\!73}a^{21}-\frac{17\!\cdots\!09}{18\!\cdots\!71}a^{20}+\frac{63\!\cdots\!51}{68\!\cdots\!73}a^{19}+\frac{34\!\cdots\!68}{18\!\cdots\!71}a^{18}+\frac{15\!\cdots\!58}{18\!\cdots\!71}a^{17}+\frac{68\!\cdots\!51}{18\!\cdots\!71}a^{16}+\frac{17\!\cdots\!73}{18\!\cdots\!71}a^{15}+\frac{27\!\cdots\!28}{76\!\cdots\!97}a^{14}-\frac{10\!\cdots\!03}{61\!\cdots\!57}a^{13}-\frac{86\!\cdots\!56}{18\!\cdots\!71}a^{12}-\frac{17\!\cdots\!58}{18\!\cdots\!71}a^{11}-\frac{41\!\cdots\!27}{18\!\cdots\!71}a^{10}-\frac{47\!\cdots\!92}{18\!\cdots\!71}a^{9}-\frac{11\!\cdots\!54}{61\!\cdots\!57}a^{8}-\frac{12\!\cdots\!70}{20\!\cdots\!19}a^{7}-\frac{65\!\cdots\!79}{76\!\cdots\!97}a^{6}-\frac{25\!\cdots\!19}{25\!\cdots\!99}a^{5}-\frac{83\!\cdots\!43}{76\!\cdots\!97}a^{4}-\frac{30\!\cdots\!45}{25\!\cdots\!99}a^{3}-\frac{65\!\cdots\!07}{84\!\cdots\!33}a^{2}-\frac{597075094702985}{28\!\cdots\!11}a-\frac{258511596424719}{941054662112137}$, $\frac{57766025397541}{18\!\cdots\!71}a^{39}+\frac{102822851306225}{18\!\cdots\!71}a^{38}-\frac{313431774019372}{18\!\cdots\!71}a^{37}+\frac{251721349266937}{18\!\cdots\!71}a^{36}+\frac{208534625551441}{61\!\cdots\!57}a^{35}-\frac{885255119124373}{61\!\cdots\!57}a^{34}+\frac{33\!\cdots\!17}{18\!\cdots\!71}a^{33}+\frac{36\!\cdots\!81}{18\!\cdots\!71}a^{32}-\frac{22\!\cdots\!49}{18\!\cdots\!71}a^{31}+\frac{37\!\cdots\!55}{18\!\cdots\!71}a^{30}+\frac{42\!\cdots\!29}{61\!\cdots\!57}a^{29}-\frac{25\!\cdots\!83}{18\!\cdots\!71}a^{28}+\frac{87\!\cdots\!26}{61\!\cdots\!57}a^{27}+\frac{29\!\cdots\!41}{18\!\cdots\!71}a^{26}-\frac{59\!\cdots\!51}{61\!\cdots\!57}a^{25}+\frac{29\!\cdots\!81}{18\!\cdots\!71}a^{24}+\frac{31\!\cdots\!17}{61\!\cdots\!57}a^{23}-\frac{15\!\cdots\!41}{18\!\cdots\!71}a^{22}+\frac{10\!\cdots\!72}{61\!\cdots\!57}a^{21}-\frac{57\!\cdots\!38}{18\!\cdots\!71}a^{20}-\frac{39\!\cdots\!43}{61\!\cdots\!57}a^{19}+\frac{29\!\cdots\!59}{18\!\cdots\!71}a^{18}+\frac{36\!\cdots\!75}{18\!\cdots\!71}a^{17}+\frac{86\!\cdots\!71}{18\!\cdots\!71}a^{16}-\frac{16\!\cdots\!86}{18\!\cdots\!71}a^{15}-\frac{84\!\cdots\!24}{61\!\cdots\!57}a^{14}-\frac{17\!\cdots\!85}{61\!\cdots\!57}a^{13}-\frac{17\!\cdots\!83}{18\!\cdots\!71}a^{12}-\frac{10\!\cdots\!12}{18\!\cdots\!71}a^{11}+\frac{71\!\cdots\!80}{18\!\cdots\!71}a^{10}+\frac{87\!\cdots\!85}{18\!\cdots\!71}a^{9}+\frac{15\!\cdots\!13}{20\!\cdots\!19}a^{8}-\frac{13\!\cdots\!22}{68\!\cdots\!73}a^{7}-\frac{15\!\cdots\!68}{68\!\cdots\!73}a^{6}-\frac{15\!\cdots\!30}{22\!\cdots\!91}a^{5}-\frac{69\!\cdots\!99}{25\!\cdots\!99}a^{4}-\frac{11\!\cdots\!51}{25\!\cdots\!99}a^{3}-\frac{321820432091399}{84\!\cdots\!33}a^{2}+\frac{778076613534260}{941054662112137}a+\frac{816123373131122}{941054662112137}$, $\frac{165573689296244}{18\!\cdots\!71}a^{39}-\frac{431373229762805}{18\!\cdots\!71}a^{38}+\frac{239965564703695}{18\!\cdots\!71}a^{37}+\frac{12\!\cdots\!95}{18\!\cdots\!71}a^{36}-\frac{144623993306735}{68\!\cdots\!73}a^{35}+\frac{12\!\cdots\!03}{61\!\cdots\!57}a^{34}+\frac{85\!\cdots\!29}{18\!\cdots\!71}a^{33}-\frac{35\!\cdots\!06}{18\!\cdots\!71}a^{32}+\frac{44\!\cdots\!14}{18\!\cdots\!71}a^{31}+\frac{49\!\cdots\!84}{18\!\cdots\!71}a^{30}-\frac{10\!\cdots\!26}{61\!\cdots\!57}a^{29}+\frac{29\!\cdots\!42}{18\!\cdots\!71}a^{28}+\frac{22\!\cdots\!11}{61\!\cdots\!57}a^{27}-\frac{27\!\cdots\!66}{18\!\cdots\!71}a^{26}+\frac{11\!\cdots\!18}{61\!\cdots\!57}a^{25}+\frac{38\!\cdots\!80}{18\!\cdots\!71}a^{24}-\frac{80\!\cdots\!25}{61\!\cdots\!57}a^{23}+\frac{39\!\cdots\!27}{18\!\cdots\!71}a^{22}+\frac{45\!\cdots\!59}{61\!\cdots\!57}a^{21}-\frac{19\!\cdots\!33}{18\!\cdots\!71}a^{20}+\frac{13\!\cdots\!56}{61\!\cdots\!57}a^{19}-\frac{64\!\cdots\!83}{18\!\cdots\!71}a^{18}-\frac{30\!\cdots\!56}{18\!\cdots\!71}a^{17}-\frac{12\!\cdots\!92}{18\!\cdots\!71}a^{16}+\frac{28\!\cdots\!13}{18\!\cdots\!71}a^{15}+\frac{10\!\cdots\!22}{61\!\cdots\!57}a^{14}+\frac{75\!\cdots\!56}{61\!\cdots\!57}a^{13}+\frac{15\!\cdots\!19}{18\!\cdots\!71}a^{12}-\frac{11\!\cdots\!94}{18\!\cdots\!71}a^{11}-\frac{15\!\cdots\!98}{18\!\cdots\!71}a^{10}-\frac{91\!\cdots\!37}{18\!\cdots\!71}a^{9}+\frac{81\!\cdots\!07}{61\!\cdots\!57}a^{8}+\frac{23\!\cdots\!15}{68\!\cdots\!73}a^{7}+\frac{96\!\cdots\!11}{22\!\cdots\!91}a^{6}-\frac{89\!\cdots\!84}{76\!\cdots\!97}a^{5}+\frac{25\!\cdots\!73}{25\!\cdots\!99}a^{4}-\frac{627552032463704}{84\!\cdots\!33}a^{3}-\frac{477007311746159}{28\!\cdots\!11}a^{2}-\frac{23\!\cdots\!43}{28\!\cdots\!11}a-\frac{58576542813186}{941054662112137}$, $\frac{33287182249}{25\!\cdots\!99}a^{36}-\frac{7736277539}{84\!\cdots\!33}a^{35}-\frac{38409202487033}{25\!\cdots\!99}a^{25}+\frac{8926341701572}{84\!\cdots\!33}a^{24}+\frac{31\!\cdots\!31}{25\!\cdots\!99}a^{14}-\frac{72\!\cdots\!71}{84\!\cdots\!33}a^{13}+\frac{18\!\cdots\!19}{25\!\cdots\!99}a^{3}-\frac{429186267826225}{84\!\cdots\!33}a^{2}-a+1$, $\frac{1723975939198}{44\!\cdots\!09}a^{39}-\frac{767689095809489}{18\!\cdots\!71}a^{38}-\frac{802492102984253}{18\!\cdots\!71}a^{37}+\frac{50\!\cdots\!42}{18\!\cdots\!71}a^{36}-\frac{28\!\cdots\!57}{61\!\cdots\!57}a^{35}-\frac{718413542753828}{61\!\cdots\!57}a^{34}+\frac{41\!\cdots\!71}{18\!\cdots\!71}a^{33}-\frac{208601090742478}{44\!\cdots\!09}a^{32}+\frac{49995302236742}{44\!\cdots\!09}a^{31}+\frac{782685076395892}{44\!\cdots\!09}a^{30}-\frac{224116872095740}{49\!\cdots\!01}a^{29}-\frac{712002062888774}{44\!\cdots\!09}a^{28}+\frac{12\!\cdots\!71}{68\!\cdots\!73}a^{27}-\frac{69\!\cdots\!12}{18\!\cdots\!71}a^{26}+\frac{23\!\cdots\!34}{22\!\cdots\!91}a^{25}+\frac{25\!\cdots\!81}{18\!\cdots\!71}a^{24}-\frac{83\!\cdots\!15}{22\!\cdots\!91}a^{23}+\frac{43\!\cdots\!12}{18\!\cdots\!71}a^{22}+\frac{16\!\cdots\!83}{16\!\cdots\!67}a^{21}-\frac{14\!\cdots\!16}{44\!\cdots\!09}a^{20}+\frac{18\!\cdots\!38}{545766784948089}a^{19}+\frac{29\!\cdots\!84}{44\!\cdots\!09}a^{18}+\frac{28\!\cdots\!54}{44\!\cdots\!09}a^{17}+\frac{25\!\cdots\!17}{18\!\cdots\!71}a^{16}-\frac{69\!\cdots\!55}{18\!\cdots\!71}a^{15}-\frac{36\!\cdots\!89}{20\!\cdots\!19}a^{14}-\frac{13\!\cdots\!60}{61\!\cdots\!57}a^{13}-\frac{33\!\cdots\!12}{18\!\cdots\!71}a^{12}+\frac{51\!\cdots\!47}{18\!\cdots\!71}a^{11}+\frac{87\!\cdots\!69}{44\!\cdots\!09}a^{10}+\frac{67\!\cdots\!06}{44\!\cdots\!09}a^{9}+\frac{13\!\cdots\!42}{14\!\cdots\!03}a^{8}+\frac{56\!\cdots\!82}{49\!\cdots\!01}a^{7}-\frac{79\!\cdots\!28}{16\!\cdots\!67}a^{6}-\frac{27\!\cdots\!64}{22\!\cdots\!91}a^{5}-\frac{46\!\cdots\!43}{76\!\cdots\!97}a^{4}+\frac{15\!\cdots\!75}{25\!\cdots\!99}a^{3}+\frac{13\!\cdots\!33}{28\!\cdots\!11}a^{2}+\frac{12\!\cdots\!44}{28\!\cdots\!11}a+\frac{142784189528844}{941054662112137}$, $\frac{207524382099520}{18\!\cdots\!71}a^{39}-\frac{377005924928017}{18\!\cdots\!71}a^{38}+\frac{19304013907604}{18\!\cdots\!71}a^{37}+\frac{16\!\cdots\!29}{18\!\cdots\!71}a^{36}-\frac{422302616062580}{20\!\cdots\!19}a^{35}+\frac{597382510773623}{61\!\cdots\!57}a^{34}+\frac{12\!\cdots\!02}{18\!\cdots\!71}a^{33}-\frac{35\!\cdots\!48}{18\!\cdots\!71}a^{32}+\frac{30\!\cdots\!59}{18\!\cdots\!71}a^{31}+\frac{84\!\cdots\!25}{18\!\cdots\!71}a^{30}-\frac{10\!\cdots\!52}{61\!\cdots\!57}a^{29}+\frac{14\!\cdots\!14}{18\!\cdots\!71}a^{28}+\frac{31\!\cdots\!43}{61\!\cdots\!57}a^{27}-\frac{28\!\cdots\!59}{18\!\cdots\!71}a^{26}+\frac{82\!\cdots\!14}{61\!\cdots\!57}a^{25}+\frac{66\!\cdots\!77}{18\!\cdots\!71}a^{24}-\frac{86\!\cdots\!17}{61\!\cdots\!57}a^{23}+\frac{30\!\cdots\!60}{18\!\cdots\!71}a^{22}+\frac{13\!\cdots\!09}{61\!\cdots\!57}a^{21}-\frac{22\!\cdots\!32}{18\!\cdots\!71}a^{20}+\frac{11\!\cdots\!53}{61\!\cdots\!57}a^{19}+\frac{17\!\cdots\!13}{18\!\cdots\!71}a^{18}+\frac{54\!\cdots\!66}{18\!\cdots\!71}a^{17}+\frac{79\!\cdots\!98}{18\!\cdots\!71}a^{16}-\frac{30\!\cdots\!33}{18\!\cdots\!71}a^{15}-\frac{32\!\cdots\!08}{61\!\cdots\!57}a^{14}-\frac{33\!\cdots\!73}{61\!\cdots\!57}a^{13}-\frac{14\!\cdots\!97}{18\!\cdots\!71}a^{12}-\frac{48\!\cdots\!39}{18\!\cdots\!71}a^{11}+\frac{41\!\cdots\!30}{18\!\cdots\!71}a^{10}+\frac{16\!\cdots\!95}{18\!\cdots\!71}a^{9}+\frac{15\!\cdots\!81}{61\!\cdots\!57}a^{8}-\frac{87\!\cdots\!19}{68\!\cdots\!73}a^{7}-\frac{28\!\cdots\!23}{22\!\cdots\!91}a^{6}+\frac{54\!\cdots\!26}{76\!\cdots\!97}a^{5}-\frac{11\!\cdots\!86}{76\!\cdots\!97}a^{4}+\frac{33\!\cdots\!46}{84\!\cdots\!33}a^{3}-\frac{33\!\cdots\!79}{84\!\cdots\!33}a^{2}+\frac{313837517740160}{28\!\cdots\!11}a+\frac{791800561716697}{941054662112137}$, $\frac{9824676077666}{61\!\cdots\!57}a^{39}-\frac{9824676077666}{20\!\cdots\!19}a^{38}+\frac{2422570322534}{61\!\cdots\!57}a^{37}+\frac{24561690194165}{20\!\cdots\!19}a^{36}-\frac{270178592135815}{61\!\cdots\!57}a^{35}+\frac{34823264331517}{68\!\cdots\!73}a^{34}+\frac{451935099572636}{61\!\cdots\!57}a^{33}-\frac{790886424252113}{20\!\cdots\!19}a^{32}+\frac{35\!\cdots\!28}{61\!\cdots\!57}a^{31}+\frac{700636206204161}{20\!\cdots\!19}a^{30}-\frac{19\!\cdots\!77}{61\!\cdots\!57}a^{29}+\frac{25\!\cdots\!28}{61\!\cdots\!57}a^{28}+\frac{34\!\cdots\!98}{61\!\cdots\!57}a^{27}-\frac{16\!\cdots\!33}{61\!\cdots\!57}a^{26}+\frac{28\!\cdots\!26}{61\!\cdots\!57}a^{25}+\frac{15\!\cdots\!40}{61\!\cdots\!57}a^{24}-\frac{15\!\cdots\!66}{61\!\cdots\!57}a^{23}+\frac{29\!\cdots\!63}{61\!\cdots\!57}a^{22}+\frac{643516283087123}{61\!\cdots\!57}a^{21}-\frac{12\!\cdots\!77}{61\!\cdots\!57}a^{20}+\frac{29\!\cdots\!34}{61\!\cdots\!57}a^{19}-\frac{12\!\cdots\!32}{61\!\cdots\!57}a^{18}-\frac{16\!\cdots\!33}{20\!\cdots\!19}a^{17}+\frac{23\!\cdots\!02}{61\!\cdots\!57}a^{16}-\frac{66\!\cdots\!77}{20\!\cdots\!19}a^{15}+\frac{68\!\cdots\!59}{61\!\cdots\!57}a^{14}+\frac{49\!\cdots\!08}{68\!\cdots\!73}a^{13}+\frac{37\!\cdots\!25}{61\!\cdots\!57}a^{12}-\frac{72\!\cdots\!57}{20\!\cdots\!19}a^{11}-\frac{30\!\cdots\!22}{61\!\cdots\!57}a^{10}-\frac{42\!\cdots\!48}{20\!\cdots\!19}a^{9}-\frac{55\!\cdots\!89}{61\!\cdots\!57}a^{8}+\frac{55\!\cdots\!95}{22\!\cdots\!91}a^{7}+\frac{20\!\cdots\!99}{76\!\cdots\!97}a^{6}+\frac{44\!\cdots\!65}{25\!\cdots\!99}a^{5}+\frac{97\!\cdots\!89}{76\!\cdots\!97}a^{4}-\frac{181756507436821}{28\!\cdots\!11}a^{3}-\frac{108071436854326}{941054662112137}a^{2}-\frac{38\!\cdots\!24}{28\!\cdots\!11}a+\frac{896843619762640}{941054662112137}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 44099133482673080 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{20}\cdot 44099133482673080 \cdot 1525}{22\cdot\sqrt{80991088329663621512136783946706428882352994235065987550082919086927689}}\cr\approx \mathstrut & 0.0987770310830574 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 - x^39 - x^38 + 7*x^37 - 12*x^36 - 3*x^35 + 58*x^34 - 121*x^33 + 29*x^32 + 454*x^31 - 1170*x^30 - 413*x^29 + 4482*x^28 - 9698*x^27 + 2592*x^26 + 35971*x^25 - 93393*x^24 + 60913*x^23 + 261981*x^22 - 865292*x^21 + 865161*x^20 + 1730608*x^19 + 1651223*x^18 + 944081*x^17 + 80422*x^16 - 555516*x^15 - 782673*x^14 - 616850*x^13 - 281134*x^12 + 50690*x^11 + 392197*x^10 + 232437*x^9 + 29331*x^8 - 123822*x^7 - 181683*x^6 - 150660*x^5 - 69255*x^4 + 15309*x^3 + 65610*x^2 + 78732*x + 59049);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{20}$ (as 40T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{-11}, \sqrt{13})\), 4.0.2197.1, 4.4.265837.1, \(\Q(\zeta_{11})^+\), 8.0.70669310569.1, \(\Q(\zeta_{11})\), 10.10.79589952003133.1, 10.0.875489472034463.1, 20.0.766481815643182771348259698369.1, 20.0.2351977956823175708448011472615877.1, 20.20.284589332775604260722209388186521117.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20^{2}$ ${\href{/padicField/3.5.0.1}{5} }^{8}$ $20^{2}$ $20^{2}$ R R ${\href{/padicField/17.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{20}$ ${\href{/padicField/29.10.0.1}{10} }^{4}$ $20^{2}$ $20^{2}$ $20^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{20}$ $20^{2}$ ${\href{/padicField/53.5.0.1}{5} }^{8}$ $20^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display Deg $40$$10$$4$$36$
\(13\) Copy content Toggle raw display Deg $40$$4$$10$$30$