Properties

Label 40.0.645...936.1
Degree $40$
Signature $[0, 20]$
Discriminant $6.460\times 10^{71}$
Root discriminant \(62.41\)
Ramified primes $2,11,13$
Class number not computed
Class group not computed
Galois group $C_2^2\times C_{10}$ (as 40T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401)
 
gp: K = bnfinit(y^40 - 7*y^38 + 40*y^36 - 217*y^34 + 1159*y^32 - 6160*y^30 + 32689*y^28 - 173383*y^26 + 919480*y^24 - 4875913*y^22 + 25856071*y^20 - 43883217*y^18 + 74477880*y^16 - 126396207*y^14 + 214472529*y^12 - 363741840*y^10 + 615940119*y^8 - 1037904273*y^6 + 1721868840*y^4 - 2711943423*y^2 + 3486784401, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401)
 

\( x^{40} - 7 x^{38} + 40 x^{36} - 217 x^{34} + 1159 x^{32} - 6160 x^{30} + 32689 x^{28} + \cdots + 3486784401 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $40$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 20]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(645956895148959968043416875848059904118905976531208178355650775729831936\) \(\medspace = 2^{40}\cdot 11^{36}\cdot 13^{20}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(62.41\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 11^{9/10}13^{1/2}\approx 62.410130178864044$
Ramified primes:   \(2\), \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $40$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(572=2^{2}\cdot 11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{572}(1,·)$, $\chi_{572}(259,·)$, $\chi_{572}(389,·)$, $\chi_{572}(519,·)$, $\chi_{572}(521,·)$, $\chi_{572}(365,·)$, $\chi_{572}(131,·)$, $\chi_{572}(25,·)$, $\chi_{572}(27,·)$, $\chi_{572}(157,·)$, $\chi_{572}(415,·)$, $\chi_{572}(545,·)$, $\chi_{572}(547,·)$, $\chi_{572}(261,·)$, $\chi_{572}(129,·)$, $\chi_{572}(391,·)$, $\chi_{572}(285,·)$, $\chi_{572}(51,·)$, $\chi_{572}(155,·)$, $\chi_{572}(181,·)$, $\chi_{572}(311,·)$, $\chi_{572}(313,·)$, $\chi_{572}(287,·)$, $\chi_{572}(53,·)$, $\chi_{572}(417,·)$, $\chi_{572}(183,·)$, $\chi_{572}(79,·)$, $\chi_{572}(337,·)$, $\chi_{572}(339,·)$, $\chi_{572}(469,·)$, $\chi_{572}(441,·)$, $\chi_{572}(207,·)$, $\chi_{572}(571,·)$, $\chi_{572}(103,·)$, $\chi_{572}(233,·)$, $\chi_{572}(235,·)$, $\chi_{572}(493,·)$, $\chi_{572}(467,·)$, $\chi_{572}(105,·)$, $\chi_{572}(443,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{524288}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3}a^{21}-\frac{1}{3}a^{19}+\frac{1}{3}a^{17}-\frac{1}{3}a^{15}+\frac{1}{3}a^{13}-\frac{1}{3}a^{11}+\frac{1}{3}a^{9}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{232704639}a^{22}-\frac{1}{9}a^{20}-\frac{2}{9}a^{18}-\frac{4}{9}a^{16}+\frac{1}{9}a^{14}+\frac{2}{9}a^{12}+\frac{4}{9}a^{10}-\frac{1}{9}a^{8}-\frac{2}{9}a^{6}-\frac{4}{9}a^{4}+\frac{1}{9}a^{2}-\frac{4875913}{25856071}$, $\frac{1}{698113917}a^{23}-\frac{1}{27}a^{21}-\frac{2}{27}a^{19}-\frac{4}{27}a^{17}-\frac{8}{27}a^{15}+\frac{11}{27}a^{13}-\frac{5}{27}a^{11}-\frac{10}{27}a^{9}+\frac{7}{27}a^{7}-\frac{13}{27}a^{5}+\frac{1}{27}a^{3}-\frac{4875913}{77568213}a$, $\frac{1}{2094341751}a^{24}+\frac{2}{2094341751}a^{22}-\frac{11}{81}a^{20}+\frac{5}{81}a^{18}-\frac{17}{81}a^{16}-\frac{7}{81}a^{14}+\frac{40}{81}a^{12}+\frac{26}{81}a^{10}+\frac{25}{81}a^{8}-\frac{4}{81}a^{6}-\frac{35}{81}a^{4}+\frac{6993386}{77568213}a^{2}-\frac{3956433}{25856071}$, $\frac{1}{6283025253}a^{25}+\frac{2}{6283025253}a^{23}-\frac{11}{243}a^{21}+\frac{5}{243}a^{19}+\frac{64}{243}a^{17}-\frac{7}{243}a^{15}-\frac{41}{243}a^{13}+\frac{107}{243}a^{11}+\frac{106}{243}a^{9}-\frac{4}{243}a^{7}+\frac{46}{243}a^{5}+\frac{84561599}{232704639}a^{3}-\frac{29812504}{77568213}a$, $\frac{1}{18849075759}a^{26}+\frac{2}{18849075759}a^{24}-\frac{1}{819525033}a^{22}-\frac{319}{729}a^{20}+\frac{145}{729}a^{18}-\frac{331}{729}a^{16}+\frac{283}{729}a^{14}+\frac{269}{729}a^{12}-\frac{56}{729}a^{10}+\frac{158}{729}a^{8}+\frac{127}{729}a^{6}+\frac{6993386}{698113917}a^{4}-\frac{1318811}{77568213}a^{2}+\frac{32439}{1124177}$, $\frac{1}{56547227277}a^{27}+\frac{2}{56547227277}a^{25}-\frac{1}{2458575099}a^{23}-\frac{319}{2187}a^{21}-\frac{584}{2187}a^{19}+\frac{398}{2187}a^{17}+\frac{283}{2187}a^{15}+\frac{998}{2187}a^{13}-\frac{785}{2187}a^{11}+\frac{887}{2187}a^{9}+\frac{856}{2187}a^{7}+\frac{6993386}{2094341751}a^{5}-\frac{1318811}{232704639}a^{3}+\frac{10813}{1124177}a$, $\frac{1}{169641681831}a^{28}+\frac{2}{169641681831}a^{26}-\frac{1}{7375725297}a^{24}+\frac{143}{169641681831}a^{22}-\frac{584}{6561}a^{20}+\frac{398}{6561}a^{18}+\frac{2470}{6561}a^{16}-\frac{1189}{6561}a^{14}-\frac{785}{6561}a^{12}+\frac{3074}{6561}a^{10}-\frac{1331}{6561}a^{8}+\frac{6993386}{6283025253}a^{6}-\frac{1318811}{698113917}a^{4}+\frac{10813}{3372531}a^{2}-\frac{140694}{25856071}$, $\frac{1}{508925045493}a^{29}+\frac{2}{508925045493}a^{27}-\frac{1}{22127175891}a^{25}+\frac{143}{508925045493}a^{23}-\frac{584}{19683}a^{21}+\frac{6959}{19683}a^{19}-\frac{4091}{19683}a^{17}+\frac{5372}{19683}a^{15}-\frac{785}{19683}a^{13}-\frac{3487}{19683}a^{11}-\frac{7892}{19683}a^{9}-\frac{6276031867}{18849075759}a^{7}+\frac{696795106}{2094341751}a^{5}-\frac{3361718}{10117593}a^{3}+\frac{25715377}{77568213}a$, $\frac{1}{1526775136479}a^{30}+\frac{2}{1526775136479}a^{28}-\frac{1}{66381527673}a^{26}+\frac{143}{1526775136479}a^{24}-\frac{794}{1526775136479}a^{22}-\frac{25846}{59049}a^{20}+\frac{9031}{59049}a^{18}-\frac{7750}{59049}a^{16}-\frac{27029}{59049}a^{14}+\frac{22757}{59049}a^{12}+\frac{24913}{59049}a^{10}+\frac{6993386}{56547227277}a^{8}-\frac{1318811}{6283025253}a^{6}+\frac{10813}{30352779}a^{4}-\frac{46898}{77568213}a^{2}+\frac{26529}{25856071}$, $\frac{1}{4580325409437}a^{31}+\frac{2}{4580325409437}a^{29}-\frac{1}{199144583019}a^{27}+\frac{143}{4580325409437}a^{25}-\frac{794}{4580325409437}a^{23}-\frac{25846}{177147}a^{21}+\frac{68080}{177147}a^{19}-\frac{66799}{177147}a^{17}+\frac{32020}{177147}a^{15}+\frac{22757}{177147}a^{13}+\frac{83962}{177147}a^{11}+\frac{56554220663}{169641681831}a^{9}-\frac{6284344064}{18849075759}a^{7}+\frac{30363592}{91058337}a^{5}-\frac{77615111}{232704639}a^{3}+\frac{25882600}{77568213}a$, $\frac{1}{13740976228311}a^{32}+\frac{2}{13740976228311}a^{30}-\frac{1}{597433749057}a^{28}+\frac{143}{13740976228311}a^{26}-\frac{794}{13740976228311}a^{24}+\frac{4271}{13740976228311}a^{22}-\frac{227165}{531441}a^{20}+\frac{228446}{531441}a^{18}-\frac{86078}{531441}a^{16}+\frac{140855}{531441}a^{14}-\frac{211283}{531441}a^{12}+\frac{6993386}{508925045493}a^{10}-\frac{1318811}{56547227277}a^{8}+\frac{10813}{273175011}a^{6}-\frac{46898}{698113917}a^{4}+\frac{8843}{77568213}a^{2}-\frac{5001}{25856071}$, $\frac{1}{41222928684933}a^{33}+\frac{2}{41222928684933}a^{31}-\frac{1}{1792301247171}a^{29}+\frac{143}{41222928684933}a^{27}-\frac{794}{41222928684933}a^{25}+\frac{4271}{41222928684933}a^{23}-\frac{227165}{1594323}a^{21}+\frac{759887}{1594323}a^{19}-\frac{86078}{1594323}a^{17}+\frac{140855}{1594323}a^{15}-\frac{211283}{1594323}a^{13}+\frac{6993386}{1526775136479}a^{11}-\frac{1318811}{169641681831}a^{9}+\frac{10813}{819525033}a^{7}-\frac{46898}{2094341751}a^{5}+\frac{8843}{232704639}a^{3}-\frac{1667}{25856071}a$, $\frac{1}{123668786054799}a^{34}+\frac{2}{123668786054799}a^{32}-\frac{1}{5376903741513}a^{30}+\frac{143}{123668786054799}a^{28}-\frac{794}{123668786054799}a^{26}+\frac{4271}{123668786054799}a^{24}-\frac{22751}{123668786054799}a^{22}-\frac{834436}{4782969}a^{20}-\frac{1680401}{4782969}a^{18}+\frac{140855}{4782969}a^{16}-\frac{211283}{4782969}a^{14}+\frac{6993386}{4580325409437}a^{12}-\frac{1318811}{508925045493}a^{10}+\frac{10813}{2458575099}a^{8}-\frac{46898}{6283025253}a^{6}+\frac{8843}{698113917}a^{4}-\frac{1667}{77568213}a^{2}+\frac{942}{25856071}$, $\frac{1}{371006358164397}a^{35}+\frac{2}{371006358164397}a^{33}-\frac{1}{16130711224539}a^{31}+\frac{143}{371006358164397}a^{29}-\frac{794}{371006358164397}a^{27}+\frac{4271}{371006358164397}a^{25}-\frac{22751}{371006358164397}a^{23}-\frac{834436}{14348907}a^{21}-\frac{6463370}{14348907}a^{19}-\frac{4642114}{14348907}a^{17}+\frac{4571686}{14348907}a^{15}-\frac{4580318416051}{13740976228311}a^{13}+\frac{508923726682}{1526775136479}a^{11}-\frac{2458564286}{7375725297}a^{9}+\frac{6282978355}{18849075759}a^{7}-\frac{698105074}{2094341751}a^{5}+\frac{77566546}{232704639}a^{3}-\frac{25855129}{77568213}a$, $\frac{1}{11\!\cdots\!91}a^{36}+\frac{2}{11\!\cdots\!91}a^{34}-\frac{1}{48392133673617}a^{32}+\frac{143}{11\!\cdots\!91}a^{30}-\frac{794}{11\!\cdots\!91}a^{28}+\frac{4271}{11\!\cdots\!91}a^{26}-\frac{22751}{11\!\cdots\!91}a^{24}+\frac{120818}{11\!\cdots\!91}a^{22}+\frac{17451475}{43046721}a^{20}+\frac{14489762}{43046721}a^{18}-\frac{211283}{43046721}a^{16}+\frac{6993386}{41222928684933}a^{14}-\frac{1318811}{4580325409437}a^{12}+\frac{10813}{22127175891}a^{10}-\frac{46898}{56547227277}a^{8}+\frac{8843}{6283025253}a^{6}-\frac{1667}{698113917}a^{4}+\frac{314}{77568213}a^{2}-\frac{177}{25856071}$, $\frac{1}{33\!\cdots\!73}a^{37}+\frac{2}{33\!\cdots\!73}a^{35}-\frac{1}{145176401020851}a^{33}+\frac{143}{33\!\cdots\!73}a^{31}-\frac{794}{33\!\cdots\!73}a^{29}+\frac{4271}{33\!\cdots\!73}a^{27}-\frac{22751}{33\!\cdots\!73}a^{25}+\frac{120818}{33\!\cdots\!73}a^{23}+\frac{17451475}{129140163}a^{21}-\frac{28556959}{129140163}a^{19}+\frac{42835438}{129140163}a^{17}+\frac{6993386}{123668786054799}a^{15}-\frac{1318811}{13740976228311}a^{13}+\frac{10813}{66381527673}a^{11}-\frac{46898}{169641681831}a^{9}+\frac{8843}{18849075759}a^{7}-\frac{1667}{2094341751}a^{5}+\frac{314}{232704639}a^{3}-\frac{59}{25856071}a$, $\frac{1}{10\!\cdots\!19}a^{38}+\frac{2}{10\!\cdots\!19}a^{36}-\frac{1}{435529203062553}a^{34}+\frac{143}{10\!\cdots\!19}a^{32}-\frac{794}{10\!\cdots\!19}a^{30}+\frac{4271}{10\!\cdots\!19}a^{28}-\frac{22751}{10\!\cdots\!19}a^{26}+\frac{120818}{10\!\cdots\!19}a^{24}-\frac{640967}{10\!\cdots\!19}a^{22}-\frac{28556959}{387420489}a^{20}+\frac{42835438}{387420489}a^{18}+\frac{6993386}{371006358164397}a^{16}-\frac{1318811}{41222928684933}a^{14}+\frac{10813}{199144583019}a^{12}-\frac{46898}{508925045493}a^{10}+\frac{8843}{56547227277}a^{8}-\frac{1667}{6283025253}a^{6}+\frac{314}{698113917}a^{4}-\frac{59}{77568213}a^{2}+\frac{33}{25856071}$, $\frac{1}{30\!\cdots\!57}a^{39}+\frac{2}{30\!\cdots\!57}a^{37}-\frac{1}{13\!\cdots\!59}a^{35}+\frac{143}{30\!\cdots\!57}a^{33}-\frac{794}{30\!\cdots\!57}a^{31}+\frac{4271}{30\!\cdots\!57}a^{29}-\frac{22751}{30\!\cdots\!57}a^{27}+\frac{120818}{30\!\cdots\!57}a^{25}-\frac{640967}{30\!\cdots\!57}a^{23}-\frac{28556959}{1162261467}a^{21}+\frac{42835438}{1162261467}a^{19}+\frac{6993386}{11\!\cdots\!91}a^{17}-\frac{1318811}{123668786054799}a^{15}+\frac{10813}{597433749057}a^{13}-\frac{46898}{1526775136479}a^{11}+\frac{8843}{169641681831}a^{9}-\frac{1667}{18849075759}a^{7}+\frac{314}{2094341751}a^{5}-\frac{59}{232704639}a^{3}+\frac{11}{25856071}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{75316}{371006358164397} a^{37} - \frac{7020022316929}{371006358164397} a^{15} \)  (order $44$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 - 7*x^38 + 40*x^36 - 217*x^34 + 1159*x^32 - 6160*x^30 + 32689*x^28 - 173383*x^26 + 919480*x^24 - 4875913*x^22 + 25856071*x^20 - 43883217*x^18 + 74477880*x^16 - 126396207*x^14 + 214472529*x^12 - 363741840*x^10 + 615940119*x^8 - 1037904273*x^6 + 1721868840*x^4 - 2711943423*x^2 + 3486784401);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_{10}$ (as 40T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2^2\times C_{10}$
Character table for $C_2^2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-143}) \), \(\Q(\sqrt{143}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-11}) \), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{143})\), \(\Q(i, \sqrt{11})\), \(\Q(\sqrt{11}, \sqrt{-13})\), \(\Q(\sqrt{-11}, \sqrt{-13})\), \(\Q(\sqrt{-11}, \sqrt{13})\), \(\Q(\sqrt{11}, \sqrt{13})\), \(\Q(\zeta_{11})^+\), 8.0.107049369856.1, 10.0.219503494144.1, 10.0.81500110851208192.3, 10.10.79589952003133.1, 10.0.875489472034463.1, 10.10.896501219363290112.1, \(\Q(\zeta_{44})^+\), \(\Q(\zeta_{11})\), 20.0.6642268068759223286357626127908864.1, 20.0.803714436319866017649272761476972544.4, \(\Q(\zeta_{44})\), 20.0.803714436319866017649272761476972544.2, 20.0.803714436319866017649272761476972544.5, 20.0.766481815643182771348259698369.1, 20.20.803714436319866017649272761476972544.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }^{4}$ ${\href{/padicField/5.10.0.1}{10} }^{4}$ ${\href{/padicField/7.10.0.1}{10} }^{4}$ R R ${\href{/padicField/17.10.0.1}{10} }^{4}$ ${\href{/padicField/19.10.0.1}{10} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{20}$ ${\href{/padicField/29.10.0.1}{10} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }^{4}$ ${\href{/padicField/37.10.0.1}{10} }^{4}$ ${\href{/padicField/41.10.0.1}{10} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{20}$ ${\href{/padicField/47.10.0.1}{10} }^{4}$ ${\href{/padicField/53.5.0.1}{5} }^{8}$ ${\href{/padicField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$2$$10$$20$
Deg $20$$2$$10$$20$
\(11\) Copy content Toggle raw display 11.20.18.1$x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241675 x^{10} + 2355135790 x^{9} + 1953262935 x^{8} + 1157863560 x^{7} + 500734950 x^{6} + 191763012 x^{5} + 243790230 x^{4} + 806750280 x^{3} + 2014356815 x^{2} + 2999040310 x + 2009802620$$10$$2$$18$20T3$[\ ]_{10}^{2}$
11.20.18.1$x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241675 x^{10} + 2355135790 x^{9} + 1953262935 x^{8} + 1157863560 x^{7} + 500734950 x^{6} + 191763012 x^{5} + 243790230 x^{4} + 806750280 x^{3} + 2014356815 x^{2} + 2999040310 x + 2009802620$$10$$2$$18$20T3$[\ ]_{10}^{2}$
\(13\) Copy content Toggle raw display 13.20.10.1$x^{20} + 1300 x^{19} + 760630 x^{18} + 263792100 x^{17} + 60057199605 x^{16} + 9380582749214 x^{15} + 1018311780763300 x^{14} + 75907334238787106 x^{13} + 3723649138838156452 x^{12} + 108997457660124507008 x^{11} + 1475055936539742904023 x^{10} + 1416974086834508372240 x^{9} + 629829636823684464902 x^{8} + 192953738203144224036 x^{7} + 798096976259371806456 x^{6} + 10514315760388324731550 x^{5} + 12773049284749524150248 x^{4} + 15044084853570106847092 x^{3} + 5322693419045842540420 x^{2} + 2225999864943544940488 x + 2898376971411614164801$$2$$10$$10$20T3$[\ ]_{2}^{10}$
13.20.10.1$x^{20} + 1300 x^{19} + 760630 x^{18} + 263792100 x^{17} + 60057199605 x^{16} + 9380582749214 x^{15} + 1018311780763300 x^{14} + 75907334238787106 x^{13} + 3723649138838156452 x^{12} + 108997457660124507008 x^{11} + 1475055936539742904023 x^{10} + 1416974086834508372240 x^{9} + 629829636823684464902 x^{8} + 192953738203144224036 x^{7} + 798096976259371806456 x^{6} + 10514315760388324731550 x^{5} + 12773049284749524150248 x^{4} + 15044084853570106847092 x^{3} + 5322693419045842540420 x^{2} + 2225999864943544940488 x + 2898376971411614164801$$2$$10$$10$20T3$[\ ]_{2}^{10}$