Properties

Label 40.0.118...536.1
Degree $40$
Signature $[0, 20]$
Discriminant $1.185\times 10^{59}$
Root discriminant \(29.98\)
Ramified primes $2,3,11$
Class number $11$ (GRH)
Class group [11] (GRH)
Galois group $C_2^2\times C_{10}$ (as 40T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1)
 
gp: K = bnfinit(y^40 + y^38 - y^34 - y^32 + y^28 + y^26 - y^22 - y^20 - y^18 + y^14 + y^12 - y^8 - y^6 + y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1)
 

\( x^{40} + x^{38} - x^{34} - x^{32} + x^{28} + x^{26} - x^{22} - x^{20} - x^{18} + x^{14} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $40$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 20]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(118511797886229481159007653491590053243629014721874976833536\) \(\medspace = 2^{40}\cdot 3^{20}\cdot 11^{36}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.98\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}11^{9/10}\approx 29.980856772829956$
Ramified primes:   \(2\), \(3\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $40$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(132=2^{2}\cdot 3\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{132}(1,·)$, $\chi_{132}(131,·)$, $\chi_{132}(5,·)$, $\chi_{132}(7,·)$, $\chi_{132}(13,·)$, $\chi_{132}(17,·)$, $\chi_{132}(19,·)$, $\chi_{132}(23,·)$, $\chi_{132}(25,·)$, $\chi_{132}(29,·)$, $\chi_{132}(31,·)$, $\chi_{132}(35,·)$, $\chi_{132}(37,·)$, $\chi_{132}(41,·)$, $\chi_{132}(43,·)$, $\chi_{132}(47,·)$, $\chi_{132}(49,·)$, $\chi_{132}(53,·)$, $\chi_{132}(59,·)$, $\chi_{132}(61,·)$, $\chi_{132}(65,·)$, $\chi_{132}(67,·)$, $\chi_{132}(71,·)$, $\chi_{132}(73,·)$, $\chi_{132}(79,·)$, $\chi_{132}(83,·)$, $\chi_{132}(85,·)$, $\chi_{132}(89,·)$, $\chi_{132}(91,·)$, $\chi_{132}(95,·)$, $\chi_{132}(97,·)$, $\chi_{132}(101,·)$, $\chi_{132}(103,·)$, $\chi_{132}(107,·)$, $\chi_{132}(109,·)$, $\chi_{132}(113,·)$, $\chi_{132}(115,·)$, $\chi_{132}(119,·)$, $\chi_{132}(125,·)$, $\chi_{132}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{524288}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{11}$, which has order $11$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( a \)  (order $132$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{12}+1$, $a^{26}-a^{20}$, $a^{24}+a^{12}+1$, $a^{24}+1$, $a^{8}-1$, $a^{22}-a^{16}-1$, $a^{39}-a^{35}-a^{33}+a^{29}+a^{27}-a^{21}+a^{15}+a^{13}-a^{9}-a^{7}+a^{3}+a$, $a^{20}-1$, $a^{10}+1$, $a^{9}-1$, $a^{38}-a^{34}-a^{32}+a^{28}+a^{26}-a^{22}-a^{20}-a^{18}+a^{14}-a^{13}+a^{12}-a^{8}-a^{6}+a^{2}+1$, $a^{13}-1$, $a^{5}-1$, $a^{15}-1$, $a^{37}-a^{31}+a^{25}-a^{21}-a^{19}-a^{14}-a^{7}-a^{6}$, $a^{38}+a^{36}+a^{35}-a^{32}-a^{30}+a^{26}+a^{24}-a^{20}-a^{18}-a^{16}+a^{12}+a^{10}-a^{6}-a^{4}+1$, $a^{19}-1$, $a^{26}-a$, $a^{33}-a^{11}-1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 45016485591237.79 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{20}\cdot 45016485591237.79 \cdot 11}{132\cdot\sqrt{118511797886229481159007653491590053243629014721874976833536}}\cr\approx \mathstrut & 0.100209043013346 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^40 + x^38 - x^34 - x^32 + x^28 + x^26 - x^22 - x^20 - x^18 + x^14 + x^12 - x^8 - x^6 + x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_{10}$ (as 40T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2^2\times C_{10}$
Character table for $C_2^2\times C_{10}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-33}) \), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\sqrt{-3}, \sqrt{11})\), \(\Q(i, \sqrt{11})\), \(\Q(i, \sqrt{33})\), \(\Q(\sqrt{3}, \sqrt{-11})\), \(\Q(\sqrt{3}, \sqrt{11})\), \(\Q(\zeta_{11})^+\), 8.0.303595776.1, 10.0.52089208083.1, 10.0.219503494144.1, 10.10.53339349076992.1, \(\Q(\zeta_{11})\), \(\Q(\zeta_{33})^+\), \(\Q(\zeta_{44})^+\), 10.0.586732839846912.1, 20.0.2845086159957207322343768064.1, \(\Q(\zeta_{33})\), 20.0.344255425354822086003595935744.2, \(\Q(\zeta_{44})\), 20.0.344255425354822086003595935744.1, 20.0.344255425354822086003595935744.3, \(\Q(\zeta_{132})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.10.0.1}{10} }^{4}$ ${\href{/padicField/7.10.0.1}{10} }^{4}$ R ${\href{/padicField/13.10.0.1}{10} }^{4}$ ${\href{/padicField/17.10.0.1}{10} }^{4}$ ${\href{/padicField/19.10.0.1}{10} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{20}$ ${\href{/padicField/29.10.0.1}{10} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }^{4}$ ${\href{/padicField/37.5.0.1}{5} }^{8}$ ${\href{/padicField/41.10.0.1}{10} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{20}$ ${\href{/padicField/47.10.0.1}{10} }^{4}$ ${\href{/padicField/53.10.0.1}{10} }^{4}$ ${\href{/padicField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$2$$10$$20$
Deg $20$$2$$10$$20$
\(3\) Copy content Toggle raw display 3.20.10.1$x^{20} + 30 x^{18} + 409 x^{16} + 4 x^{15} + 3244 x^{14} - 60 x^{13} + 16162 x^{12} - 1250 x^{11} + 53008 x^{10} - 7102 x^{9} + 121150 x^{8} - 12140 x^{7} + 219264 x^{6} + 5736 x^{5} + 257465 x^{4} + 35250 x^{3} + 250183 x^{2} + 51502 x + 77812$$2$$10$$10$20T3$[\ ]_{2}^{10}$
3.20.10.1$x^{20} + 30 x^{18} + 409 x^{16} + 4 x^{15} + 3244 x^{14} - 60 x^{13} + 16162 x^{12} - 1250 x^{11} + 53008 x^{10} - 7102 x^{9} + 121150 x^{8} - 12140 x^{7} + 219264 x^{6} + 5736 x^{5} + 257465 x^{4} + 35250 x^{3} + 250183 x^{2} + 51502 x + 77812$$2$$10$$10$20T3$[\ ]_{2}^{10}$
\(11\) Copy content Toggle raw display 11.20.18.1$x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241675 x^{10} + 2355135790 x^{9} + 1953262935 x^{8} + 1157863560 x^{7} + 500734950 x^{6} + 191763012 x^{5} + 243790230 x^{4} + 806750280 x^{3} + 2014356815 x^{2} + 2999040310 x + 2009802620$$10$$2$$18$20T3$[\ ]_{10}^{2}$
11.20.18.1$x^{20} + 70 x^{19} + 2225 x^{18} + 42420 x^{17} + 539670 x^{16} + 4821684 x^{15} + 31004730 x^{14} + 144683280 x^{13} + 488310165 x^{12} + 1177567510 x^{11} + 1996241675 x^{10} + 2355135790 x^{9} + 1953262935 x^{8} + 1157863560 x^{7} + 500734950 x^{6} + 191763012 x^{5} + 243790230 x^{4} + 806750280 x^{3} + 2014356815 x^{2} + 2999040310 x + 2009802620$$10$$2$$18$20T3$[\ ]_{10}^{2}$