Properties

Label 4.0.508805.3
Degree $4$
Signature $[0, 2]$
Discriminant $5\cdot 11^{2}\cdot 29^{2}$
Root discriminant $26.71$
Ramified primes $5, 11, 29$
Class number $4$
Class group $[4]$
Galois Group $D_{4}$ (as 4T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![67, 32, 16, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^4 - x^3 + 16*x^2 + 32*x + 67)
gp: K = bnfinit(x^4 - x^3 + 16*x^2 + 32*x + 67, 1)

Normalized defining polynomial

\(x^{4} \) \(\mathstrut -\mathstrut x^{3} \) \(\mathstrut +\mathstrut 16 x^{2} \) \(\mathstrut +\mathstrut 32 x \) \(\mathstrut +\mathstrut 67 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $4$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 2]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(508805=5\cdot 11^{2}\cdot 29^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $26.71$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $5, 11, 29$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{19} a^{3} + \frac{2}{19} a^{2} + \frac{3}{19} a + \frac{3}{19}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Multiplicative Abelian group isomorphic to C4, order $4$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $1$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental unit:  \( \frac{1}{19} a^{3} + \frac{2}{19} a^{2} + \frac{3}{19} a + \frac{3}{19} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 3.29446229274 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$D_4$ (as 4T3):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 8
The 5 conjugacy class representatives for $D_{4}$
Character table for $D_{4}$

Intermediate fields

\(\Q(\sqrt{29}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: 8.0.6472063200625.8
Degree 4 sibling: 4.0.87725.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }$ ${\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
$29$29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.29.2t1.1c1$1$ $ 29 $ $x^{2} - x - 7$ $C_2$ (as 2T1) $1$ $1$
1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.5_29.2t1.1c1$1$ $ 5 \cdot 29 $ $x^{2} - x - 36$ $C_2$ (as 2T1) $1$ $1$
* 2.5_11e2_29.4t3.1c1$2$ $ 5 \cdot 11^{2} \cdot 29 $ $x^{4} - x^{3} + 16 x^{2} + 32 x + 67$ $D_{4}$ (as 4T3) $1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.