Properties

Label 39.39.118...449.2
Degree $39$
Signature $[39, 0]$
Discriminant $1.181\times 10^{101}$
Root discriminant \(390.48\)
Ramified primes $13,79$
Class number not computed
Class group not computed
Galois group $C_{39}$ (as 39T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029)
 
gp: K = bnfinit(y^39 - y^38 - 354*y^37 + 511*y^36 + 56045*y^35 - 103251*y^34 - 5247131*y^33 + 11548919*y^32 + 323858271*y^31 - 818077472*y^30 - 13912915879*y^29 + 39305918508*y^28 + 428252335706*y^27 - 1330679343737*y^26 - 9579637340859*y^25 + 32404331102658*y^24 + 156314779697940*y^23 - 572661461636511*y^22 - 1851957964341868*y^21 + 7341898588148461*y^20 + 15740944592310945*y^19 - 67699689278718824*y^18 - 94298948980717131*y^17 + 441371170652289465*y^16 + 391057744594350035*y^15 - 1980375180524138330*y^14 - 1121115212503618422*y^13 + 5873379572582775725*y^12 + 2334047970653280778*y^11 - 10818653588566378140*y^10 - 3849139231012138630*y^9 + 11165439791508447499*y^8 + 4690051537532888413*y^7 - 5357278100940296591*y^6 - 2992545959704021257*y^5 + 706803441870504299*y^4 + 694897163472669662*y^3 + 124066763635805181*y^2 + 4291829198615412*y - 176560760826029, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029)
 

\( x^{39} - x^{38} - 354 x^{37} + 511 x^{36} + 56045 x^{35} - 103251 x^{34} - 5247131 x^{33} + \cdots - 176560760826029 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $39$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[39, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(118\!\cdots\!449\) \(\medspace = 13^{26}\cdot 79^{38}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(390.48\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{2/3}79^{38/39}\approx 390.4800838648001$
Ramified primes:   \(13\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $39$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1027=13\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{1027}(1,·)$, $\chi_{1027}(131,·)$, $\chi_{1027}(516,·)$, $\chi_{1027}(263,·)$, $\chi_{1027}(783,·)$, $\chi_{1027}(144,·)$, $\chi_{1027}(529,·)$, $\chi_{1027}(406,·)$, $\chi_{1027}(900,·)$, $\chi_{1027}(282,·)$, $\chi_{1027}(417,·)$, $\chi_{1027}(326,·)$, $\chi_{1027}(809,·)$, $\chi_{1027}(555,·)$, $\chi_{1027}(562,·)$, $\chi_{1027}(815,·)$, $\chi_{1027}(945,·)$, $\chi_{1027}(178,·)$, $\chi_{1027}(822,·)$, $\chi_{1027}(952,·)$, $\chi_{1027}(445,·)$, $\chi_{1027}(705,·)$, $\chi_{1027}(196,·)$, $\chi_{1027}(198,·)$, $\chi_{1027}(841,·)$, $\chi_{1027}(724,·)$, $\chi_{1027}(599,·)$, $\chi_{1027}(984,·)$, $\chi_{1027}(729,·)$, $\chi_{1027}(222,·)$, $\chi_{1027}(482,·)$, $\chi_{1027}(997,·)$, $\chi_{1027}(360,·)$, $\chi_{1027}(874,·)$, $\chi_{1027}(495,·)$, $\chi_{1027}(497,·)$, $\chi_{1027}(1015,·)$, $\chi_{1027}(378,·)$, $\chi_{1027}(490,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{23}a^{19}-\frac{1}{23}a^{18}-\frac{7}{23}a^{17}+\frac{2}{23}a^{16}+\frac{11}{23}a^{15}+\frac{5}{23}a^{14}-\frac{3}{23}a^{13}+\frac{7}{23}a^{12}+\frac{3}{23}a^{11}-\frac{1}{23}a^{10}+\frac{8}{23}a^{9}+\frac{6}{23}a^{8}+\frac{5}{23}a^{7}-\frac{9}{23}a^{6}-\frac{5}{23}a^{5}-\frac{2}{23}a^{4}-\frac{6}{23}a^{3}-\frac{7}{23}a^{2}-\frac{7}{23}a$, $\frac{1}{23}a^{20}-\frac{8}{23}a^{18}-\frac{5}{23}a^{17}-\frac{10}{23}a^{16}-\frac{7}{23}a^{15}+\frac{2}{23}a^{14}+\frac{4}{23}a^{13}+\frac{10}{23}a^{12}+\frac{2}{23}a^{11}+\frac{7}{23}a^{10}-\frac{9}{23}a^{9}+\frac{11}{23}a^{8}-\frac{4}{23}a^{7}+\frac{9}{23}a^{6}-\frac{7}{23}a^{5}-\frac{8}{23}a^{4}+\frac{10}{23}a^{3}+\frac{9}{23}a^{2}-\frac{7}{23}a$, $\frac{1}{23}a^{21}+\frac{10}{23}a^{18}+\frac{3}{23}a^{17}+\frac{9}{23}a^{16}-\frac{2}{23}a^{15}-\frac{2}{23}a^{14}+\frac{9}{23}a^{13}-\frac{11}{23}a^{12}+\frac{8}{23}a^{11}+\frac{6}{23}a^{10}+\frac{6}{23}a^{9}-\frac{2}{23}a^{8}+\frac{3}{23}a^{7}-\frac{10}{23}a^{6}-\frac{2}{23}a^{5}-\frac{6}{23}a^{4}+\frac{7}{23}a^{3}+\frac{6}{23}a^{2}-\frac{10}{23}a$, $\frac{1}{23}a^{22}-\frac{10}{23}a^{18}+\frac{10}{23}a^{17}+\frac{1}{23}a^{16}+\frac{3}{23}a^{15}+\frac{5}{23}a^{14}-\frac{4}{23}a^{13}+\frac{7}{23}a^{12}-\frac{1}{23}a^{11}-\frac{7}{23}a^{10}+\frac{10}{23}a^{9}-\frac{11}{23}a^{8}+\frac{9}{23}a^{7}-\frac{4}{23}a^{6}-\frac{2}{23}a^{5}+\frac{4}{23}a^{4}-\frac{3}{23}a^{3}-\frac{9}{23}a^{2}+\frac{1}{23}a$, $\frac{1}{23}a^{23}-\frac{1}{23}a$, $\frac{1}{23}a^{24}-\frac{1}{23}a^{2}$, $\frac{1}{23}a^{25}-\frac{1}{23}a^{3}$, $\frac{1}{23}a^{26}-\frac{1}{23}a^{4}$, $\frac{1}{23}a^{27}-\frac{1}{23}a^{5}$, $\frac{1}{23}a^{28}-\frac{1}{23}a^{6}$, $\frac{1}{23}a^{29}-\frac{1}{23}a^{7}$, $\frac{1}{23}a^{30}-\frac{1}{23}a^{8}$, $\frac{1}{23}a^{31}-\frac{1}{23}a^{9}$, $\frac{1}{23}a^{32}-\frac{1}{23}a^{10}$, $\frac{1}{83053}a^{33}+\frac{800}{83053}a^{32}+\frac{911}{83053}a^{31}-\frac{842}{83053}a^{30}-\frac{1209}{83053}a^{29}-\frac{501}{83053}a^{28}+\frac{1777}{83053}a^{27}-\frac{932}{83053}a^{26}+\frac{658}{83053}a^{25}-\frac{1475}{83053}a^{24}-\frac{1053}{83053}a^{23}+\frac{539}{83053}a^{22}-\frac{1429}{83053}a^{21}+\frac{1749}{83053}a^{20}+\frac{1442}{83053}a^{19}-\frac{13655}{83053}a^{18}-\frac{25901}{83053}a^{17}+\frac{35839}{83053}a^{16}-\frac{8167}{83053}a^{15}+\frac{395}{3611}a^{14}+\frac{16449}{83053}a^{13}-\frac{33884}{83053}a^{12}+\frac{16598}{83053}a^{11}+\frac{39}{157}a^{10}+\frac{3752}{83053}a^{9}+\frac{11540}{83053}a^{8}+\frac{38097}{83053}a^{7}+\frac{31682}{83053}a^{6}+\frac{1802}{83053}a^{5}-\frac{30905}{83053}a^{4}-\frac{24048}{83053}a^{3}-\frac{37767}{83053}a^{2}+\frac{1871}{83053}a-\frac{114}{3611}$, $\frac{1}{83053}a^{34}+\frac{58}{83053}a^{32}-\frac{220}{83053}a^{31}+\frac{745}{83053}a^{30}-\frac{1049}{83053}a^{29}+\frac{1756}{83053}a^{28}+\frac{202}{83053}a^{27}-\frac{53}{3611}a^{26}-\frac{669}{83053}a^{25}+\frac{1761}{83053}a^{24}+\frac{1576}{83053}a^{23}+\frac{691}{83053}a^{22}+\frac{262}{83053}a^{21}-\frac{301}{83053}a^{20}-\frac{902}{83053}a^{19}-\frac{36009}{83053}a^{18}+\frac{25888}{83053}a^{17}-\frac{1134}{3611}a^{16}-\frac{25724}{83053}a^{15}+\frac{17392}{83053}a^{14}+\frac{34009}{83053}a^{13}+\frac{23243}{83053}a^{12}-\frac{27065}{83053}a^{11}+\frac{12055}{83053}a^{10}-\frac{32651}{83053}a^{9}-\frac{7519}{83053}a^{8}-\frac{34076}{83053}a^{7}-\frac{27077}{83053}a^{6}+\frac{22449}{83053}a^{5}+\frac{22378}{83053}a^{4}-\frac{24331}{83053}a^{3}+\frac{38344}{83053}a^{2}+\frac{2754}{83053}a+\frac{925}{3611}$, $\frac{1}{83053}a^{35}+\frac{323}{83053}a^{32}-\frac{1539}{83053}a^{31}+\frac{844}{83053}a^{30}-\frac{342}{83053}a^{29}+\frac{372}{83053}a^{28}+\frac{434}{83053}a^{27}-\frac{778}{83053}a^{26}-\frac{293}{83053}a^{25}+\frac{462}{83053}a^{24}+\frac{378}{83053}a^{23}+\frac{1499}{83053}a^{22}-\frac{472}{83053}a^{21}-\frac{1236}{83053}a^{20}-\frac{482}{83053}a^{19}-\frac{19874}{83053}a^{18}-\frac{36833}{83053}a^{17}-\frac{20839}{83053}a^{16}+\frac{28870}{83053}a^{15}-\frac{30713}{83053}a^{14}-\frac{17216}{83053}a^{13}+\frac{24377}{83053}a^{12}-\frac{8158}{83053}a^{11}-\frac{1509}{83053}a^{10}+\frac{9580}{83053}a^{9}-\frac{17306}{83053}a^{8}-\frac{19549}{83053}a^{7}-\frac{2385}{83053}a^{6}+\frac{22581}{83053}a^{5}-\frac{8453}{83053}a^{4}+\frac{17616}{83053}a^{3}-\frac{13081}{83053}a^{2}-\frac{40300}{83053}a-\frac{610}{3611}$, $\frac{1}{83053}a^{36}+\frac{53}{83053}a^{32}-\frac{918}{83053}a^{31}+\frac{799}{83053}a^{30}+\frac{891}{83053}a^{29}-\frac{238}{83053}a^{28}-\frac{600}{83053}a^{27}+\frac{1030}{83053}a^{26}+\frac{977}{83053}a^{25}+\frac{151}{83053}a^{24}-\frac{1427}{83053}a^{23}-\frac{1241}{83053}a^{22}+\frac{1734}{83053}a^{21}+\frac{66}{3611}a^{20}-\frac{1766}{83053}a^{19}+\frac{11644}{83053}a^{18}-\frac{10670}{83053}a^{17}-\frac{905}{3611}a^{16}+\frac{86}{83053}a^{15}-\frac{23150}{83053}a^{14}+\frac{8687}{83053}a^{13}+\frac{5877}{83053}a^{12}+\frac{24949}{83053}a^{11}-\frac{2771}{83053}a^{10}-\frac{33961}{83053}a^{9}+\frac{22915}{83053}a^{8}-\frac{37538}{83053}a^{7}-\frac{9630}{83053}a^{6}-\frac{5517}{83053}a^{5}+\frac{19127}{83053}a^{4}+\frac{16050}{83053}a^{3}-\frac{10629}{83053}a^{2}+\frac{35228}{83053}a+\frac{712}{3611}$, $\frac{1}{26327801}a^{37}-\frac{78}{26327801}a^{36}-\frac{47}{26327801}a^{35}+\frac{97}{26327801}a^{34}+\frac{63}{26327801}a^{33}-\frac{320764}{26327801}a^{32}+\frac{291390}{26327801}a^{31}-\frac{221415}{26327801}a^{30}-\frac{250558}{26327801}a^{29}+\frac{274132}{26327801}a^{28}-\frac{83255}{26327801}a^{27}-\frac{498961}{26327801}a^{26}+\frac{157450}{26327801}a^{25}-\frac{539665}{26327801}a^{24}+\frac{25203}{26327801}a^{23}+\frac{519372}{26327801}a^{22}-\frac{367640}{26327801}a^{21}-\frac{420441}{26327801}a^{20}+\frac{348131}{26327801}a^{19}-\frac{891553}{26327801}a^{18}+\frac{114866}{26327801}a^{17}+\frac{7891851}{26327801}a^{16}-\frac{8964881}{26327801}a^{15}-\frac{10552915}{26327801}a^{14}-\frac{6517216}{26327801}a^{13}+\frac{7558555}{26327801}a^{12}+\frac{2774821}{26327801}a^{11}+\frac{197043}{1144687}a^{10}-\frac{6656726}{26327801}a^{9}+\frac{8943928}{26327801}a^{8}+\frac{9918569}{26327801}a^{7}+\frac{2711552}{26327801}a^{6}+\frac{5848310}{26327801}a^{5}+\frac{6665370}{26327801}a^{4}-\frac{6828780}{26327801}a^{3}+\frac{8283744}{26327801}a^{2}-\frac{10521431}{26327801}a+\frac{278379}{1144687}$, $\frac{1}{24\!\cdots\!13}a^{38}-\frac{32\!\cdots\!68}{24\!\cdots\!13}a^{37}+\frac{48\!\cdots\!46}{24\!\cdots\!13}a^{36}-\frac{10\!\cdots\!20}{24\!\cdots\!13}a^{35}+\frac{71\!\cdots\!98}{24\!\cdots\!13}a^{34}+\frac{78\!\cdots\!91}{24\!\cdots\!13}a^{33}+\frac{28\!\cdots\!75}{24\!\cdots\!13}a^{32}-\frac{47\!\cdots\!01}{24\!\cdots\!13}a^{31}-\frac{35\!\cdots\!92}{24\!\cdots\!13}a^{30}-\frac{15\!\cdots\!40}{24\!\cdots\!13}a^{29}-\frac{54\!\cdots\!21}{24\!\cdots\!13}a^{28}-\frac{10\!\cdots\!39}{24\!\cdots\!13}a^{27}-\frac{41\!\cdots\!18}{24\!\cdots\!13}a^{26}-\frac{31\!\cdots\!96}{24\!\cdots\!13}a^{25}+\frac{11\!\cdots\!35}{24\!\cdots\!13}a^{24}-\frac{25\!\cdots\!42}{24\!\cdots\!13}a^{23}+\frac{22\!\cdots\!75}{24\!\cdots\!13}a^{22}-\frac{28\!\cdots\!20}{24\!\cdots\!13}a^{21}-\frac{47\!\cdots\!14}{24\!\cdots\!13}a^{20}+\frac{26\!\cdots\!63}{24\!\cdots\!13}a^{19}+\frac{37\!\cdots\!27}{24\!\cdots\!13}a^{18}+\frac{66\!\cdots\!69}{24\!\cdots\!13}a^{17}-\frac{85\!\cdots\!72}{24\!\cdots\!13}a^{16}+\frac{92\!\cdots\!95}{24\!\cdots\!13}a^{15}-\frac{81\!\cdots\!32}{24\!\cdots\!13}a^{14}+\frac{88\!\cdots\!30}{24\!\cdots\!13}a^{13}+\frac{23\!\cdots\!53}{24\!\cdots\!13}a^{12}+\frac{48\!\cdots\!94}{24\!\cdots\!13}a^{11}-\frac{91\!\cdots\!62}{24\!\cdots\!13}a^{10}-\frac{67\!\cdots\!95}{24\!\cdots\!13}a^{9}+\frac{35\!\cdots\!97}{24\!\cdots\!13}a^{8}-\frac{89\!\cdots\!32}{24\!\cdots\!13}a^{7}-\frac{14\!\cdots\!12}{24\!\cdots\!13}a^{6}-\frac{28\!\cdots\!47}{24\!\cdots\!13}a^{5}+\frac{68\!\cdots\!69}{24\!\cdots\!13}a^{4}-\frac{11\!\cdots\!47}{24\!\cdots\!13}a^{3}-\frac{11\!\cdots\!80}{24\!\cdots\!13}a^{2}-\frac{30\!\cdots\!52}{24\!\cdots\!13}a+\frac{30\!\cdots\!29}{10\!\cdots\!31}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $23$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $38$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13912915879*x^29 + 39305918508*x^28 + 428252335706*x^27 - 1330679343737*x^26 - 9579637340859*x^25 + 32404331102658*x^24 + 156314779697940*x^23 - 572661461636511*x^22 - 1851957964341868*x^21 + 7341898588148461*x^20 + 15740944592310945*x^19 - 67699689278718824*x^18 - 94298948980717131*x^17 + 441371170652289465*x^16 + 391057744594350035*x^15 - 1980375180524138330*x^14 - 1121115212503618422*x^13 + 5873379572582775725*x^12 + 2334047970653280778*x^11 - 10818653588566378140*x^10 - 3849139231012138630*x^9 + 11165439791508447499*x^8 + 4690051537532888413*x^7 - 5357278100940296591*x^6 - 2992545959704021257*x^5 + 706803441870504299*x^4 + 694897163472669662*x^3 + 124066763635805181*x^2 + 4291829198615412*x - 176560760826029);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{39}$ (as 39T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 39
The 39 conjugacy class representatives for $C_{39}$
Character table for $C_{39}$ is not computed

Intermediate fields

3.3.1054729.2, 13.13.59091511031674153381441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $39$ $39$ $39$ $39$ ${\href{/padicField/11.13.0.1}{13} }^{3}$ R $39$ $39$ ${\href{/padicField/23.1.0.1}{1} }^{39}$ ${\href{/padicField/29.13.0.1}{13} }^{3}$ $39$ $39$ $39$ ${\href{/padicField/43.13.0.1}{13} }^{3}$ $39$ $39$ ${\href{/padicField/59.13.0.1}{13} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display Deg $39$$3$$13$$26$
\(79\) Copy content Toggle raw display Deg $39$$39$$1$$38$