Properties

Label 39.39.118...449.1
Degree $39$
Signature $[39, 0]$
Discriminant $1.181\times 10^{101}$
Root discriminant \(390.48\)
Ramified primes $13,79$
Class number not computed
Class group not computed
Galois group $C_{39}$ (as 39T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581)
 
gp: K = bnfinit(y^39 - y^38 - 354*y^37 + 511*y^36 + 56045*y^35 - 103251*y^34 - 5247131*y^33 + 11548919*y^32 + 323858271*y^31 - 818077472*y^30 - 13915010959*y^29 + 39315623658*y^28 + 428683737326*y^27 - 1332897877353*y^26 - 9615971778232*y^25 + 32610615529383*y^24 + 157954520735238*y^23 - 583064031850378*y^22 - 1895313576585435*y^21 + 7659727015753552*y^20 + 16422194396956823*y^19 - 73899082723108593*y^18 - 100210603740569843*y^17 + 520414495467180616*y^16 + 408676600606594002*y^15 - 2642936340868695765*y^14 - 971974365656650043*y^13 + 9496075566431610394*y^12 + 586468002053107902*y^11 - 23471590571480299925*y^10 + 3789203055222994557*y^9 + 38292325977191105354*y^8 - 12389487729343041691*y^7 - 38551672930076472707*y^6 + 17045767379408771012*y^5 + 21043564296778861782*y^4 - 11248804489468062285*y^3 - 4368569542269920485*y^2 + 2837239422181036677*y - 221647485396299581, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581)
 

\( x^{39} - x^{38} - 354 x^{37} + 511 x^{36} + 56045 x^{35} - 103251 x^{34} - 5247131 x^{33} + \cdots - 22\!\cdots\!81 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $39$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[39, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(118\!\cdots\!449\) \(\medspace = 13^{26}\cdot 79^{38}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(390.48\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{2/3}79^{38/39}\approx 390.4800838648001$
Ramified primes:   \(13\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $39$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1027=13\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{1027}(256,·)$, $\chi_{1027}(1,·)$, $\chi_{1027}(131,·)$, $\chi_{1027}(9,·)$, $\chi_{1027}(523,·)$, $\chi_{1027}(269,·)$, $\chi_{1027}(399,·)$, $\chi_{1027}(16,·)$, $\chi_{1027}(913,·)$, $\chi_{1027}(919,·)$, $\chi_{1027}(152,·)$, $\chi_{1027}(367,·)$, $\chi_{1027}(672,·)$, $\chi_{1027}(417,·)$, $\chi_{1027}(347,·)$, $\chi_{1027}(42,·)$, $\chi_{1027}(55,·)$, $\chi_{1027}(321,·)$, $\chi_{1027}(835,·)$, $\chi_{1027}(196,·)$, $\chi_{1027}(326,·)$, $\chi_{1027}(971,·)$, $\chi_{1027}(81,·)$, $\chi_{1027}(341,·)$, $\chi_{1027}(599,·)$, $\chi_{1027}(729,·)$, $\chi_{1027}(731,·)$, $\chi_{1027}(378,·)$, $\chi_{1027}(222,·)$, $\chi_{1027}(471,·)$, $\chi_{1027}(737,·)$, $\chi_{1027}(482,·)$, $\chi_{1027}(230,·)$, $\chi_{1027}(144,·)$, $\chi_{1027}(495,·)$, $\chi_{1027}(880,·)$, $\chi_{1027}(1015,·)$, $\chi_{1027}(250,·)$, $\chi_{1027}(510,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{157}a^{36}+\frac{26}{157}a^{35}-\frac{2}{157}a^{34}-\frac{24}{157}a^{33}-\frac{54}{157}a^{32}-\frac{36}{157}a^{31}+\frac{66}{157}a^{30}+\frac{16}{157}a^{29}-\frac{28}{157}a^{28}+\frac{40}{157}a^{27}-\frac{60}{157}a^{26}+\frac{70}{157}a^{25}+\frac{34}{157}a^{24}-\frac{38}{157}a^{23}-\frac{46}{157}a^{22}+\frac{13}{157}a^{21}-\frac{58}{157}a^{20}-\frac{57}{157}a^{19}-\frac{45}{157}a^{18}-\frac{62}{157}a^{17}+\frac{57}{157}a^{16}+\frac{30}{157}a^{15}-\frac{37}{157}a^{14}+\frac{65}{157}a^{13}-\frac{65}{157}a^{12}+\frac{45}{157}a^{11}+\frac{6}{157}a^{10}+\frac{10}{157}a^{9}+\frac{62}{157}a^{8}+\frac{15}{157}a^{7}-\frac{13}{157}a^{6}-\frac{51}{157}a^{5}+\frac{57}{157}a^{4}-\frac{32}{157}a^{3}-\frac{66}{157}a^{2}-\frac{64}{157}a+\frac{22}{157}$, $\frac{1}{19274419}a^{37}+\frac{44507}{19274419}a^{36}+\frac{3136588}{19274419}a^{35}+\frac{3112715}{19274419}a^{34}-\frac{8344548}{19274419}a^{33}+\frac{7862807}{19274419}a^{32}+\frac{7599421}{19274419}a^{31}+\frac{9412012}{19274419}a^{30}-\frac{6847097}{19274419}a^{29}-\frac{7871770}{19274419}a^{28}+\frac{8024797}{19274419}a^{27}+\frac{4137631}{19274419}a^{26}-\frac{9558551}{19274419}a^{25}+\frac{4906499}{19274419}a^{24}-\frac{3666483}{19274419}a^{23}-\frac{6222313}{19274419}a^{22}-\frac{4108412}{19274419}a^{21}+\frac{4970175}{19274419}a^{20}-\frac{9398246}{19274419}a^{19}-\frac{3195221}{19274419}a^{18}-\frac{433066}{19274419}a^{17}+\frac{5066915}{19274419}a^{16}-\frac{500309}{19274419}a^{15}-\frac{6092600}{19274419}a^{14}+\frac{9440141}{19274419}a^{13}-\frac{1756581}{19274419}a^{12}+\frac{5679062}{19274419}a^{11}-\frac{7645119}{19274419}a^{10}+\frac{4475062}{19274419}a^{9}+\frac{10758}{46001}a^{8}+\frac{8580002}{19274419}a^{7}-\frac{2512544}{19274419}a^{6}+\frac{8026173}{19274419}a^{5}+\frac{6185007}{19274419}a^{4}+\frac{5479675}{19274419}a^{3}-\frac{444377}{19274419}a^{2}+\frac{2570209}{19274419}a-\frac{7086979}{19274419}$, $\frac{1}{34\!\cdots\!13}a^{38}-\frac{56\!\cdots\!30}{34\!\cdots\!13}a^{37}-\frac{84\!\cdots\!55}{34\!\cdots\!13}a^{36}-\frac{13\!\cdots\!10}{34\!\cdots\!13}a^{35}+\frac{15\!\cdots\!06}{34\!\cdots\!13}a^{34}-\frac{91\!\cdots\!26}{34\!\cdots\!13}a^{33}-\frac{11\!\cdots\!98}{34\!\cdots\!13}a^{32}+\frac{80\!\cdots\!71}{34\!\cdots\!13}a^{31}+\frac{13\!\cdots\!53}{34\!\cdots\!13}a^{30}+\frac{45\!\cdots\!80}{34\!\cdots\!13}a^{29}+\frac{21\!\cdots\!17}{34\!\cdots\!13}a^{28}+\frac{16\!\cdots\!09}{34\!\cdots\!13}a^{27}-\frac{10\!\cdots\!70}{34\!\cdots\!13}a^{26}+\frac{11\!\cdots\!55}{34\!\cdots\!13}a^{25}+\frac{14\!\cdots\!83}{34\!\cdots\!13}a^{24}+\frac{10\!\cdots\!67}{34\!\cdots\!13}a^{23}+\frac{70\!\cdots\!87}{34\!\cdots\!13}a^{22}-\frac{15\!\cdots\!25}{34\!\cdots\!13}a^{21}+\frac{61\!\cdots\!10}{34\!\cdots\!13}a^{20}+\frac{14\!\cdots\!46}{34\!\cdots\!13}a^{19}+\frac{87\!\cdots\!72}{34\!\cdots\!13}a^{18}+\frac{15\!\cdots\!78}{34\!\cdots\!13}a^{17}+\frac{96\!\cdots\!46}{34\!\cdots\!13}a^{16}-\frac{13\!\cdots\!31}{34\!\cdots\!13}a^{15}-\frac{12\!\cdots\!61}{34\!\cdots\!13}a^{14}-\frac{57\!\cdots\!37}{34\!\cdots\!13}a^{13}+\frac{77\!\cdots\!42}{34\!\cdots\!13}a^{12}+\frac{15\!\cdots\!64}{34\!\cdots\!13}a^{11}+\frac{92\!\cdots\!65}{34\!\cdots\!13}a^{10}-\frac{21\!\cdots\!32}{34\!\cdots\!13}a^{9}+\frac{12\!\cdots\!34}{34\!\cdots\!13}a^{8}+\frac{98\!\cdots\!68}{34\!\cdots\!13}a^{7}-\frac{12\!\cdots\!64}{34\!\cdots\!13}a^{6}+\frac{18\!\cdots\!32}{34\!\cdots\!13}a^{5}+\frac{11\!\cdots\!48}{34\!\cdots\!13}a^{4}+\frac{17\!\cdots\!96}{34\!\cdots\!13}a^{3}-\frac{15\!\cdots\!14}{34\!\cdots\!13}a^{2}+\frac{11\!\cdots\!61}{34\!\cdots\!13}a+\frac{45\!\cdots\!32}{34\!\cdots\!13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $38$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^39 - x^38 - 354*x^37 + 511*x^36 + 56045*x^35 - 103251*x^34 - 5247131*x^33 + 11548919*x^32 + 323858271*x^31 - 818077472*x^30 - 13915010959*x^29 + 39315623658*x^28 + 428683737326*x^27 - 1332897877353*x^26 - 9615971778232*x^25 + 32610615529383*x^24 + 157954520735238*x^23 - 583064031850378*x^22 - 1895313576585435*x^21 + 7659727015753552*x^20 + 16422194396956823*x^19 - 73899082723108593*x^18 - 100210603740569843*x^17 + 520414495467180616*x^16 + 408676600606594002*x^15 - 2642936340868695765*x^14 - 971974365656650043*x^13 + 9496075566431610394*x^12 + 586468002053107902*x^11 - 23471590571480299925*x^10 + 3789203055222994557*x^9 + 38292325977191105354*x^8 - 12389487729343041691*x^7 - 38551672930076472707*x^6 + 17045767379408771012*x^5 + 21043564296778861782*x^4 - 11248804489468062285*x^3 - 4368569542269920485*x^2 + 2837239422181036677*x - 221647485396299581);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{39}$ (as 39T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 39
The 39 conjugacy class representatives for $C_{39}$
Character table for $C_{39}$ is not computed

Intermediate fields

3.3.1054729.1, 13.13.59091511031674153381441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }^{3}$ ${\href{/padicField/3.13.0.1}{13} }^{3}$ $39$ ${\href{/padicField/7.13.0.1}{13} }^{3}$ $39$ R $39$ ${\href{/padicField/19.13.0.1}{13} }^{3}$ ${\href{/padicField/23.3.0.1}{3} }^{13}$ $39$ $39$ ${\href{/padicField/37.13.0.1}{13} }^{3}$ $39$ $39$ $39$ $39$ $39$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display Deg $39$$3$$13$$26$
\(79\) Copy content Toggle raw display Deg $39$$39$$1$$38$