Properties

Label 38.2.108...821.1
Degree $38$
Signature $[2, 18]$
Discriminant $1.086\times 10^{60}$
Root discriminant \(38.01\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{38}$ (as 38T76)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^38 - x - 1)
 
gp: K = bnfinit(y^38 - y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^38 - x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - x - 1)
 

\( x^{38} - x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $38$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1086466936935771765474507582942119612061614764913786264052821\) \(\medspace = 624808693\cdot 17\!\cdots\!97\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $624808693^{1/2}1738879354765590249997542180390437704844184626147297^{1/2}\approx 1.0423372472169321e+30$
Ramified primes:   \(624808693\), \(17388\!\cdots\!47297\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{10864\!\cdots\!52821}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{37}-1$, $a^{37}-a^{36}-a^{17}-1$, $a^{7}+a^{3}$, $a^{23}-a^{22}$, $a^{9}-a^{4}$, $a^{37}-a^{36}+a^{35}-a^{34}+a^{33}-a^{32}+a^{31}+a^{6}-1$, $a^{37}-a^{36}+a^{35}-a^{22}-1$, $a^{37}-a^{36}+a^{35}+a^{31}-a^{30}+a^{29}+a^{3}$, $a^{37}+a^{35}-a^{34}-a^{32}+a^{31}+a^{29}-a^{28}-a^{26}+a^{23}-a^{20}+a^{17}-a^{14}+a^{11}+a^{10}-a^{8}-a^{7}+a^{5}+a^{4}-a^{2}-a-1$, $a^{36}-a^{35}+a^{34}+a^{30}-a^{29}+a^{28}+a^{24}+a^{20}+a^{17}+a^{14}+a^{11}+a^{8}+a^{5}+a^{2}$, $2a^{37}-a^{36}+a^{35}-a^{34}+a^{33}+a^{30}-a^{29}+a^{28}-a^{27}+a^{26}-a^{25}-a^{22}+a^{21}-a^{20}+a^{19}-a^{18}+a^{17}-a^{16}+a^{15}+a^{13}-a^{9}+a^{8}-a^{7}+a^{6}-a^{5}-a^{3}-2$, $a^{35}-a^{34}+a^{29}-a^{24}-a^{21}+a^{20}-a^{15}+a^{10}-a^{6}-a^{5}+a+1$, $a^{36}-a^{32}+a^{31}-a^{30}+a^{29}-a^{28}+a^{27}-a^{23}-a^{21}+a^{20}-a^{14}-a^{12}+a^{9}+1$, $a^{37}-a^{36}+a^{35}-a^{34}+a^{29}+a^{27}+a^{24}+a^{22}+a^{21}+a^{19}+a^{13}-a^{12}-a^{10}-a^{9}-a^{7}-a^{4}-a^{3}-a^{2}-a-1$, $a^{36}-a^{35}-a^{32}-a^{29}+a^{28}+a^{25}-a^{20}-a^{18}+a^{14}+a^{13}+a^{11}-a^{9}-a^{7}-a^{6}+a^{2}+a$, $a^{37}-a^{36}+2a^{35}-a^{34}+a^{33}+a^{31}-a^{30}-a^{28}+2a^{27}-a^{26}+a^{25}+a^{23}-a^{21}+a^{15}+a^{14}-a^{13}-a^{11}+a^{10}-a^{9}+a^{7}+a^{6}+a^{2}-a-1$, $2a^{37}-2a^{36}+a^{35}+a^{33}-a^{32}+a^{31}+a^{27}-a^{26}+a^{23}-a^{22}+a^{17}-a^{15}+a^{13}-a^{12}-a^{8}+a^{7}-a^{5}+a^{3}-1$, $a^{37}-a^{36}+a^{35}-a^{34}+a^{33}+a^{30}-a^{29}-a^{27}+a^{26}+a^{24}-a^{23}-a^{19}+a^{17}-a^{14}-a^{12}+a^{11}-a^{5}+2a^{2}-2$, $4a^{37}-4a^{36}+4a^{35}-4a^{34}+4a^{33}-4a^{32}+4a^{31}-4a^{30}+3a^{29}-3a^{28}+2a^{27}-2a^{26}+2a^{25}-2a^{24}+a^{23}-a^{22}-a^{17}+a^{16}-a^{15}+a^{14}-a^{13}+2a^{12}-a^{11}+a^{10}-a^{9}+2a^{8}-a^{7}+a^{6}+a^{4}-a^{3}+a^{2}-3$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 900165801403525.9 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{18}\cdot 900165801403525.9 \cdot 1}{2\cdot\sqrt{1086466936935771765474507582942119612061614764913786264052821}}\cr\approx \mathstrut & 0.402329500724777 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^38 - x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^38 - x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^38 - x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^38 - x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{38}$ (as 38T76):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 523022617466601111760007224100074291200000000
The 26015 conjugacy class representatives for $S_{38}$ are not computed
Character table for $S_{38}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $33{,}\,{\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ $20{,}\,{\href{/padicField/3.13.0.1}{13} }{,}\,{\href{/padicField/3.5.0.1}{5} }$ $21{,}\,{\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ $19^{2}$ $29{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ $36{,}\,{\href{/padicField/13.2.0.1}{2} }$ $17{,}\,{\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $15^{2}{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $33{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ $28{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ $15{,}\,{\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $19^{2}$ ${\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ $32{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ $20{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ $32{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ $38$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(624808693\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $30$$1$$30$$0$$C_{30}$$[\ ]^{30}$
\(173\!\cdots\!297\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $36$$1$$36$$0$$C_{36}$$[\ ]^{36}$