Properties

Label 36.0.485...969.1
Degree $36$
Signature $[0, 18]$
Discriminant $4.853\times 10^{61}$
Root discriminant \(51.70\)
Ramified primes $3,11$
Class number not computed
Class group not computed
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489)
 
gp: K = bnfinit(y^36 - 136*y^27 - 1187*y^18 - 2676888*y^9 + 387420489, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489)
 

\( x^{36} - 136x^{27} - 1187x^{18} - 2676888x^{9} + 387420489 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(48526755753740305052512669329205843844959387036328330042655969\) \(\medspace = 3^{90}\cdot 11^{18}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(51.70\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{5/2}11^{1/2}\approx 51.70106381884226$
Ramified primes:   \(3\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(297=3^{3}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{297}(1,·)$, $\chi_{297}(131,·)$, $\chi_{297}(133,·)$, $\chi_{297}(263,·)$, $\chi_{297}(265,·)$, $\chi_{297}(10,·)$, $\chi_{297}(142,·)$, $\chi_{297}(274,·)$, $\chi_{297}(23,·)$, $\chi_{297}(155,·)$, $\chi_{297}(287,·)$, $\chi_{297}(32,·)$, $\chi_{297}(34,·)$, $\chi_{297}(164,·)$, $\chi_{297}(166,·)$, $\chi_{297}(296,·)$, $\chi_{297}(43,·)$, $\chi_{297}(175,·)$, $\chi_{297}(56,·)$, $\chi_{297}(188,·)$, $\chi_{297}(65,·)$, $\chi_{297}(67,·)$, $\chi_{297}(197,·)$, $\chi_{297}(199,·)$, $\chi_{297}(76,·)$, $\chi_{297}(208,·)$, $\chi_{297}(89,·)$, $\chi_{297}(221,·)$, $\chi_{297}(98,·)$, $\chi_{297}(100,·)$, $\chi_{297}(230,·)$, $\chi_{297}(232,·)$, $\chi_{297}(109,·)$, $\chi_{297}(241,·)$, $\chi_{297}(122,·)$, $\chi_{297}(254,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{74}a^{18}-\frac{31}{74}a^{9}-\frac{1}{74}$, $\frac{1}{222}a^{19}-\frac{31}{222}a^{10}+\frac{73}{222}a$, $\frac{1}{666}a^{20}-\frac{253}{666}a^{11}+\frac{73}{666}a^{2}$, $\frac{1}{1998}a^{21}-\frac{919}{1998}a^{12}-\frac{593}{1998}a^{3}$, $\frac{1}{5994}a^{22}+\frac{1079}{5994}a^{13}+\frac{1405}{5994}a^{4}$, $\frac{1}{17982}a^{23}+\frac{1079}{17982}a^{14}-\frac{4589}{17982}a^{5}$, $\frac{1}{53946}a^{24}-\frac{16903}{53946}a^{15}+\frac{13393}{53946}a^{6}$, $\frac{1}{161838}a^{25}+\frac{37043}{161838}a^{16}-\frac{40553}{161838}a^{7}$, $\frac{1}{485514}a^{26}-\frac{124795}{485514}a^{17}-\frac{40553}{485514}a^{8}$, $\frac{1}{1728915354}a^{27}-\frac{796}{728271}a^{18}+\frac{49207}{728271}a^{9}-\frac{8445}{87838}$, $\frac{1}{5186746062}a^{28}-\frac{796}{2184813}a^{19}-\frac{679064}{2184813}a^{10}-\frac{96283}{263514}a$, $\frac{1}{15560238186}a^{29}-\frac{796}{6554439}a^{20}-\frac{679064}{6554439}a^{11}+\frac{167231}{790542}a^{2}$, $\frac{1}{46680714558}a^{30}-\frac{796}{19663317}a^{21}-\frac{679064}{19663317}a^{12}-\frac{623311}{2371626}a^{3}$, $\frac{1}{140042143674}a^{31}-\frac{796}{58989951}a^{22}+\frac{18984253}{58989951}a^{13}+\frac{1748315}{7114878}a^{4}$, $\frac{1}{420126431022}a^{32}-\frac{796}{176969853}a^{23}+\frac{18984253}{176969853}a^{14}-\frac{5366563}{21344634}a^{5}$, $\frac{1}{1260379293066}a^{33}-\frac{796}{530909559}a^{24}+\frac{18984253}{530909559}a^{15}-\frac{26711197}{64033902}a^{6}$, $\frac{1}{3781137879198}a^{34}-\frac{796}{1592728677}a^{25}+\frac{18984253}{1592728677}a^{16}-\frac{90745099}{192101706}a^{7}$, $\frac{1}{11343413637594}a^{35}-\frac{796}{4778186031}a^{26}+\frac{18984253}{4778186031}a^{17}+\frac{101356607}{576305118}a^{8}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{2108}{2593373031} a^{28} - \frac{31}{4369626} a^{19} - \frac{15467}{4369626} a^{10} + \frac{203391}{87838} a \)  (order $54$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{18}$ (as 36T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{33}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\zeta_{9})\), 6.0.8732691.1, 6.6.26198073.1, \(\Q(\zeta_{27})^+\), 12.0.686339028913329.1, \(\Q(\zeta_{27})\), 18.0.2322038274967832964613417227771.2, 18.18.6966114824903498893840251683313.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $18^{2}$ R $18^{2}$ $18^{2}$ R $18^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ ${\href{/padicField/31.9.0.1}{9} }^{4}$ ${\href{/padicField/37.3.0.1}{3} }^{12}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{18}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$45$
Deg $18$$18$$1$$45$
\(11\) Copy content Toggle raw display Deg $36$$2$$18$$18$