Properties

Label 36.0.466...625.1
Degree $36$
Signature $[0, 18]$
Discriminant $4.667\times 10^{64}$
Root discriminant \(62.57\)
Ramified primes $5,7,13$
Class number $18252$ (GRH)
Class group [3, 78, 78] (GRH)
Galois group $C_6^2$ (as 36T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625)
 
gp: K = bnfinit(y^36 - y^35 + 13*y^34 - 12*y^33 + 136*y^32 - 102*y^31 + 1346*y^30 - 2451*y^29 + 14878*y^28 - 26274*y^27 + 149073*y^26 - 238348*y^25 + 1434220*y^24 - 2018276*y^23 + 4847897*y^22 - 7515837*y^21 + 15331678*y^20 - 19685757*y^19 + 41203829*y^18 + 6109454*y^17 + 40517626*y^16 + 12539976*y^15 + 43737647*y^14 + 6924502*y^13 + 56036661*y^12 - 17241760*y^11 + 25873295*y^10 - 10539950*y^9 + 15076150*y^8 - 3353375*y^7 + 8256125*y^6 + 2810625*y^5 + 988125*y^4 + 321875*y^3 + 121875*y^2 + 31250*y + 15625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625)
 

\( x^{36} - x^{35} + 13 x^{34} - 12 x^{33} + 136 x^{32} - 102 x^{31} + 1346 x^{30} - 2451 x^{29} + \cdots + 15625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(46670422643729575749553066692313283284467702220107608795166015625\) \(\medspace = 5^{18}\cdot 7^{30}\cdot 13^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(62.57\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}7^{5/6}13^{2/3}\approx 62.56944033849911$
Ramified primes:   \(5\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(455=5\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(386,·)$, $\chi_{455}(131,·)$, $\chi_{455}(261,·)$, $\chi_{455}(391,·)$, $\chi_{455}(9,·)$, $\chi_{455}(139,·)$, $\chi_{455}(269,·)$, $\chi_{455}(16,·)$, $\chi_{455}(274,·)$, $\chi_{455}(276,·)$, $\chi_{455}(29,·)$, $\chi_{455}(159,·)$, $\chi_{455}(289,·)$, $\chi_{455}(419,·)$, $\chi_{455}(61,·)$, $\chi_{455}(191,·)$, $\chi_{455}(321,·)$, $\chi_{455}(66,·)$, $\chi_{455}(451,·)$, $\chi_{455}(326,·)$, $\chi_{455}(74,·)$, $\chi_{455}(204,·)$, $\chi_{455}(334,·)$, $\chi_{455}(79,·)$, $\chi_{455}(81,·)$, $\chi_{455}(339,·)$, $\chi_{455}(341,·)$, $\chi_{455}(94,·)$, $\chi_{455}(144,·)$, $\chi_{455}(354,·)$, $\chi_{455}(209,·)$, $\chi_{455}(146,·)$, $\chi_{455}(211,·)$, $\chi_{455}(404,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3}a^{21}-\frac{1}{3}a^{14}-\frac{1}{3}a^{7}-\frac{1}{3}$, $\frac{1}{3}a^{22}-\frac{1}{3}a^{15}-\frac{1}{3}a^{8}-\frac{1}{3}a$, $\frac{1}{3}a^{23}-\frac{1}{3}a^{16}-\frac{1}{3}a^{9}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{24}-\frac{1}{3}a^{17}-\frac{1}{3}a^{10}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{25}-\frac{1}{3}a^{18}-\frac{1}{3}a^{11}-\frac{1}{3}a^{4}$, $\frac{1}{15}a^{26}-\frac{1}{15}a^{25}-\frac{2}{15}a^{24}-\frac{2}{15}a^{23}+\frac{1}{15}a^{22}-\frac{2}{15}a^{21}+\frac{2}{5}a^{20}-\frac{1}{15}a^{19}-\frac{2}{15}a^{18}-\frac{4}{15}a^{17}-\frac{7}{15}a^{16}+\frac{2}{15}a^{15}+\frac{1}{3}a^{14}-\frac{2}{5}a^{13}+\frac{2}{15}a^{12}-\frac{2}{15}a^{11}-\frac{7}{15}a^{10}-\frac{7}{15}a^{9}-\frac{1}{15}a^{8}-\frac{1}{15}a^{7}+\frac{2}{5}a^{6}-\frac{4}{15}a^{5}+\frac{7}{15}a^{4}+\frac{2}{15}a^{3}-\frac{4}{15}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{15}a^{27}+\frac{2}{15}a^{25}+\frac{1}{15}a^{24}-\frac{1}{15}a^{23}-\frac{1}{15}a^{22}-\frac{1}{15}a^{21}+\frac{1}{3}a^{20}-\frac{1}{5}a^{19}+\frac{4}{15}a^{18}-\frac{1}{15}a^{17}-\frac{1}{3}a^{16}+\frac{7}{15}a^{15}+\frac{4}{15}a^{14}-\frac{4}{15}a^{13}+\frac{1}{15}a^{11}-\frac{4}{15}a^{10}+\frac{7}{15}a^{9}-\frac{2}{15}a^{8}-\frac{1}{3}a^{7}+\frac{2}{15}a^{6}+\frac{1}{5}a^{5}+\frac{4}{15}a^{4}-\frac{7}{15}a^{3}+\frac{1}{15}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{75}a^{28}-\frac{1}{75}a^{27}-\frac{2}{75}a^{26}+\frac{1}{25}a^{25}-\frac{3}{25}a^{24}+\frac{1}{25}a^{23}+\frac{2}{25}a^{22}+\frac{4}{75}a^{21}+\frac{13}{75}a^{20}-\frac{34}{75}a^{19}+\frac{1}{25}a^{18}+\frac{4}{25}a^{17}-\frac{2}{25}a^{15}-\frac{1}{25}a^{14}+\frac{28}{75}a^{13}+\frac{23}{75}a^{12}-\frac{9}{25}a^{11}+\frac{3}{25}a^{10}+\frac{3}{25}a^{9}-\frac{3}{25}a^{8}-\frac{3}{25}a^{7}+\frac{7}{75}a^{6}-\frac{13}{75}a^{5}+\frac{2}{25}a^{4}-\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{1}{3}$, $\frac{1}{75}a^{29}+\frac{2}{75}a^{27}+\frac{1}{75}a^{26}+\frac{4}{75}a^{25}-\frac{1}{75}a^{24}+\frac{4}{75}a^{23}+\frac{1}{15}a^{22}+\frac{4}{25}a^{21}+\frac{4}{75}a^{20}+\frac{29}{75}a^{19}+\frac{7}{15}a^{18}+\frac{7}{75}a^{17}-\frac{31}{75}a^{16}+\frac{26}{75}a^{15}-\frac{2}{5}a^{14}+\frac{31}{75}a^{13}-\frac{4}{75}a^{12}-\frac{13}{75}a^{11}-\frac{2}{75}a^{10}+\frac{7}{15}a^{9}-\frac{28}{75}a^{8}-\frac{9}{25}a^{7}+\frac{4}{75}a^{6}+\frac{8}{75}a^{5}+\frac{11}{75}a^{4}-\frac{4}{15}a^{3}+\frac{7}{15}a^{2}$, $\frac{1}{56625}a^{30}-\frac{346}{56625}a^{29}+\frac{358}{56625}a^{28}-\frac{722}{56625}a^{27}+\frac{167}{18875}a^{26}+\frac{2053}{56625}a^{25}-\frac{8764}{56625}a^{24}+\frac{193}{18875}a^{23}+\frac{2641}{18875}a^{22}+\frac{2447}{18875}a^{21}-\frac{9172}{56625}a^{20}+\frac{7639}{18875}a^{19}+\frac{5311}{11325}a^{18}+\frac{7774}{56625}a^{17}+\frac{9667}{56625}a^{16}+\frac{22823}{56625}a^{15}-\frac{19082}{56625}a^{14}+\frac{14258}{56625}a^{13}+\frac{6398}{18875}a^{12}-\frac{2476}{56625}a^{11}-\frac{3179}{56625}a^{10}-\frac{4019}{56625}a^{9}+\frac{17027}{56625}a^{8}-\frac{10313}{56625}a^{7}-\frac{4}{56625}a^{6}+\frac{308}{3775}a^{5}-\frac{4541}{11325}a^{4}-\frac{428}{2265}a^{3}+\frac{851}{2265}a^{2}+\frac{152}{453}a-\frac{218}{453}$, $\frac{1}{33\!\cdots\!25}a^{31}-\frac{82\!\cdots\!71}{11\!\cdots\!75}a^{30}-\frac{70\!\cdots\!26}{66\!\cdots\!25}a^{29}+\frac{10\!\cdots\!29}{11\!\cdots\!75}a^{28}-\frac{91\!\cdots\!67}{66\!\cdots\!25}a^{27}+\frac{39\!\cdots\!26}{33\!\cdots\!25}a^{26}-\frac{32\!\cdots\!94}{22\!\cdots\!75}a^{25}+\frac{60\!\cdots\!19}{11\!\cdots\!75}a^{24}+\frac{25\!\cdots\!94}{22\!\cdots\!75}a^{23}+\frac{29\!\cdots\!18}{22\!\cdots\!75}a^{22}+\frac{49\!\cdots\!71}{33\!\cdots\!25}a^{21}-\frac{96\!\cdots\!79}{33\!\cdots\!25}a^{20}+\frac{12\!\cdots\!31}{33\!\cdots\!25}a^{19}-\frac{31\!\cdots\!92}{11\!\cdots\!75}a^{18}+\frac{10\!\cdots\!84}{33\!\cdots\!25}a^{17}-\frac{10\!\cdots\!32}{11\!\cdots\!75}a^{16}+\frac{47\!\cdots\!12}{33\!\cdots\!25}a^{15}-\frac{10\!\cdots\!58}{33\!\cdots\!25}a^{14}+\frac{16\!\cdots\!98}{33\!\cdots\!25}a^{13}-\frac{84\!\cdots\!84}{33\!\cdots\!25}a^{12}-\frac{52\!\cdots\!89}{11\!\cdots\!75}a^{11}-\frac{36\!\cdots\!81}{33\!\cdots\!25}a^{10}+\frac{44\!\cdots\!47}{22\!\cdots\!75}a^{9}-\frac{10\!\cdots\!92}{33\!\cdots\!25}a^{8}+\frac{10\!\cdots\!02}{33\!\cdots\!25}a^{7}+\frac{32\!\cdots\!98}{33\!\cdots\!25}a^{6}+\frac{10\!\cdots\!72}{66\!\cdots\!25}a^{5}+\frac{29\!\cdots\!04}{22\!\cdots\!75}a^{4}-\frac{24\!\cdots\!87}{13\!\cdots\!05}a^{3}-\frac{98\!\cdots\!19}{44\!\cdots\!35}a^{2}-\frac{62\!\cdots\!98}{26\!\cdots\!21}a-\frac{14\!\cdots\!68}{26\!\cdots\!21}$, $\frac{1}{16\!\cdots\!25}a^{32}-\frac{1}{16\!\cdots\!25}a^{31}-\frac{50\!\cdots\!97}{16\!\cdots\!25}a^{30}+\frac{25\!\cdots\!23}{16\!\cdots\!25}a^{29}-\frac{25\!\cdots\!19}{16\!\cdots\!25}a^{28}+\frac{32\!\cdots\!43}{16\!\cdots\!25}a^{27}-\frac{30\!\cdots\!14}{16\!\cdots\!25}a^{26}+\frac{10\!\cdots\!69}{16\!\cdots\!25}a^{25}-\frac{24\!\cdots\!32}{16\!\cdots\!25}a^{24}+\frac{13\!\cdots\!36}{16\!\cdots\!25}a^{23}-\frac{12\!\cdots\!82}{16\!\cdots\!25}a^{22}-\frac{13\!\cdots\!58}{16\!\cdots\!25}a^{21}+\frac{32\!\cdots\!33}{33\!\cdots\!25}a^{20}+\frac{47\!\cdots\!04}{16\!\cdots\!25}a^{19}+\frac{23\!\cdots\!74}{55\!\cdots\!75}a^{18}-\frac{23\!\cdots\!59}{55\!\cdots\!75}a^{17}+\frac{35\!\cdots\!83}{16\!\cdots\!25}a^{16}+\frac{15\!\cdots\!71}{55\!\cdots\!75}a^{15}+\frac{57\!\cdots\!99}{16\!\cdots\!25}a^{14}-\frac{53\!\cdots\!51}{16\!\cdots\!25}a^{13}+\frac{92\!\cdots\!86}{16\!\cdots\!25}a^{12}+\frac{26\!\cdots\!12}{55\!\cdots\!75}a^{11}-\frac{27\!\cdots\!71}{55\!\cdots\!75}a^{10}+\frac{59\!\cdots\!17}{16\!\cdots\!25}a^{9}+\frac{98\!\cdots\!72}{55\!\cdots\!75}a^{8}-\frac{12\!\cdots\!31}{33\!\cdots\!25}a^{7}-\frac{56\!\cdots\!18}{33\!\cdots\!25}a^{6}-\frac{12\!\cdots\!14}{17\!\cdots\!71}a^{5}+\frac{93\!\cdots\!83}{66\!\cdots\!25}a^{4}+\frac{39\!\cdots\!02}{26\!\cdots\!21}a^{3}+\frac{10\!\cdots\!69}{44\!\cdots\!35}a^{2}+\frac{13\!\cdots\!98}{32\!\cdots\!87}a+\frac{38\!\cdots\!65}{89\!\cdots\!07}$, $\frac{1}{16\!\cdots\!25}a^{33}+\frac{2}{16\!\cdots\!25}a^{31}+\frac{34\!\cdots\!91}{16\!\cdots\!25}a^{30}+\frac{15\!\cdots\!39}{16\!\cdots\!25}a^{29}-\frac{51\!\cdots\!77}{55\!\cdots\!75}a^{28}+\frac{20\!\cdots\!49}{16\!\cdots\!25}a^{27}-\frac{66\!\cdots\!71}{33\!\cdots\!25}a^{26}-\frac{29\!\cdots\!81}{55\!\cdots\!75}a^{25}+\frac{12\!\cdots\!98}{55\!\cdots\!75}a^{24}+\frac{22\!\cdots\!64}{16\!\cdots\!25}a^{23}-\frac{30\!\cdots\!24}{33\!\cdots\!25}a^{22}+\frac{11\!\cdots\!97}{16\!\cdots\!25}a^{21}+\frac{80\!\cdots\!39}{16\!\cdots\!25}a^{20}+\frac{26\!\cdots\!06}{16\!\cdots\!25}a^{19}+\frac{44\!\cdots\!03}{11\!\cdots\!75}a^{18}-\frac{17\!\cdots\!34}{16\!\cdots\!25}a^{17}+\frac{11\!\cdots\!42}{55\!\cdots\!75}a^{16}+\frac{77\!\cdots\!32}{16\!\cdots\!25}a^{15}-\frac{83\!\cdots\!07}{16\!\cdots\!25}a^{14}+\frac{14\!\cdots\!06}{33\!\cdots\!25}a^{13}-\frac{25\!\cdots\!93}{16\!\cdots\!25}a^{12}-\frac{16\!\cdots\!64}{55\!\cdots\!75}a^{11}-\frac{57\!\cdots\!06}{16\!\cdots\!25}a^{10}-\frac{60\!\cdots\!09}{55\!\cdots\!75}a^{9}-\frac{21\!\cdots\!84}{16\!\cdots\!25}a^{8}+\frac{47\!\cdots\!57}{33\!\cdots\!25}a^{7}+\frac{30\!\cdots\!27}{66\!\cdots\!25}a^{6}-\frac{98\!\cdots\!29}{22\!\cdots\!75}a^{5}-\frac{15\!\cdots\!13}{44\!\cdots\!35}a^{4}-\frac{13\!\cdots\!90}{26\!\cdots\!21}a^{3}+\frac{32\!\cdots\!59}{13\!\cdots\!05}a^{2}-\frac{22\!\cdots\!90}{89\!\cdots\!07}a+\frac{79\!\cdots\!07}{26\!\cdots\!21}$, $\frac{1}{83\!\cdots\!25}a^{34}-\frac{1}{83\!\cdots\!25}a^{33}-\frac{2}{83\!\cdots\!25}a^{32}+\frac{1}{27\!\cdots\!75}a^{31}+\frac{69\!\cdots\!66}{83\!\cdots\!25}a^{30}+\frac{80\!\cdots\!26}{27\!\cdots\!75}a^{29}-\frac{23\!\cdots\!94}{83\!\cdots\!25}a^{28}+\frac{76\!\cdots\!04}{83\!\cdots\!25}a^{27}-\frac{43\!\cdots\!12}{83\!\cdots\!25}a^{26}+\frac{97\!\cdots\!66}{83\!\cdots\!25}a^{25}-\frac{30\!\cdots\!22}{83\!\cdots\!25}a^{24}-\frac{54\!\cdots\!63}{83\!\cdots\!25}a^{23}+\frac{14\!\cdots\!07}{13\!\cdots\!05}a^{22}-\frac{12\!\cdots\!81}{83\!\cdots\!25}a^{21}-\frac{11\!\cdots\!03}{83\!\cdots\!25}a^{20}-\frac{32\!\cdots\!99}{27\!\cdots\!75}a^{19}-\frac{62\!\cdots\!06}{11\!\cdots\!25}a^{18}-\frac{27\!\cdots\!27}{83\!\cdots\!25}a^{17}+\frac{13\!\cdots\!03}{27\!\cdots\!75}a^{16}-\frac{26\!\cdots\!66}{83\!\cdots\!25}a^{15}-\frac{22\!\cdots\!34}{83\!\cdots\!25}a^{14}-\frac{25\!\cdots\!59}{83\!\cdots\!25}a^{13}-\frac{56\!\cdots\!56}{27\!\cdots\!75}a^{12}+\frac{79\!\cdots\!79}{27\!\cdots\!75}a^{11}-\frac{13\!\cdots\!69}{83\!\cdots\!25}a^{10}-\frac{21\!\cdots\!61}{55\!\cdots\!75}a^{9}-\frac{29\!\cdots\!74}{16\!\cdots\!25}a^{8}+\frac{15\!\cdots\!78}{33\!\cdots\!25}a^{7}+\frac{45\!\cdots\!08}{11\!\cdots\!75}a^{6}+\frac{12\!\cdots\!61}{66\!\cdots\!25}a^{5}+\frac{24\!\cdots\!91}{66\!\cdots\!25}a^{4}-\frac{27\!\cdots\!05}{26\!\cdots\!21}a^{3}-\frac{40\!\cdots\!11}{13\!\cdots\!05}a^{2}-\frac{86\!\cdots\!08}{26\!\cdots\!21}a-\frac{38\!\cdots\!17}{89\!\cdots\!07}$, $\frac{1}{83\!\cdots\!25}a^{35}+\frac{2}{83\!\cdots\!25}a^{33}+\frac{1}{83\!\cdots\!25}a^{32}+\frac{4}{83\!\cdots\!25}a^{31}+\frac{64\!\cdots\!99}{83\!\cdots\!25}a^{30}+\frac{27\!\cdots\!79}{83\!\cdots\!25}a^{29}-\frac{82\!\cdots\!74}{16\!\cdots\!25}a^{28}+\frac{13\!\cdots\!87}{83\!\cdots\!25}a^{27}-\frac{12\!\cdots\!96}{83\!\cdots\!25}a^{26}+\frac{26\!\cdots\!04}{83\!\cdots\!25}a^{25}+\frac{30\!\cdots\!14}{55\!\cdots\!75}a^{24}+\frac{89\!\cdots\!32}{83\!\cdots\!25}a^{23}+\frac{13\!\cdots\!94}{83\!\cdots\!25}a^{22}+\frac{43\!\cdots\!92}{27\!\cdots\!75}a^{21}-\frac{19\!\cdots\!36}{16\!\cdots\!25}a^{20}-\frac{11\!\cdots\!19}{83\!\cdots\!25}a^{19}-\frac{11\!\cdots\!43}{27\!\cdots\!75}a^{18}-\frac{35\!\cdots\!38}{83\!\cdots\!25}a^{17}-\frac{23\!\cdots\!77}{83\!\cdots\!25}a^{16}-\frac{91\!\cdots\!71}{55\!\cdots\!75}a^{15}-\frac{50\!\cdots\!76}{27\!\cdots\!75}a^{14}+\frac{41\!\cdots\!23}{83\!\cdots\!25}a^{13}-\frac{25\!\cdots\!71}{83\!\cdots\!25}a^{12}-\frac{10\!\cdots\!14}{27\!\cdots\!75}a^{11}-\frac{37\!\cdots\!64}{83\!\cdots\!25}a^{10}-\frac{96\!\cdots\!33}{20\!\cdots\!75}a^{9}+\frac{12\!\cdots\!34}{55\!\cdots\!75}a^{8}-\frac{13\!\cdots\!69}{33\!\cdots\!25}a^{7}+\frac{73\!\cdots\!69}{33\!\cdots\!25}a^{6}-\frac{21\!\cdots\!02}{93\!\cdots\!25}a^{5}-\frac{24\!\cdots\!32}{13\!\cdots\!05}a^{4}-\frac{61\!\cdots\!61}{13\!\cdots\!05}a^{3}+\frac{18\!\cdots\!39}{44\!\cdots\!35}a^{2}-\frac{31\!\cdots\!10}{26\!\cdots\!21}a-\frac{57\!\cdots\!29}{89\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{78}\times C_{78}$, which has order $18252$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{321895090839992174366614}{11067025627333589241951889794375} a^{35} + \frac{4184636180919898266765982}{11067025627333589241951889794375} a^{34} - \frac{1287580363359968697466456}{3689008542444529747317296598125} a^{33} + \frac{43777732354238935713859504}{11067025627333589241951889794375} a^{32} - \frac{10944433088559733928464876}{3689008542444529747317296598125} a^{31} + \frac{433270792270629466697462444}{11067025627333589241951889794375} a^{30} - \frac{228199911163771939252709326}{11067025627333589241951889794375} a^{29} + \frac{4789155161517403570226483092}{11067025627333589241951889794375} a^{28} - \frac{2819157205576651463102805412}{3689008542444529747317296598125} a^{27} + \frac{15995288958930051136451416274}{3689008542444529747317296598125} a^{26} - \frac{76723051111530454775933713672}{11067025627333589241951889794375} a^{25} + \frac{92333675436906715264017026216}{2213405125466717848390377958875} a^{24} - \frac{649673136360176045711952237464}{11067025627333589241951889794375} a^{23} + \frac{292602782533831772247282968776}{737801708488905949463459319625} a^{22} - \frac{806437011284524754605016355306}{3689008542444529747317296598125} a^{21} + \frac{4935191882539509539908779798292}{11067025627333589241951889794375} a^{20} - \frac{2112249512589670608827597372266}{3689008542444529747317296598125} a^{19} + \frac{13263310278910503913940146565006}{11067025627333589241951889794375} a^{18} + \frac{1966603250312753549652807368756}{11067025627333589241951889794375} a^{17} + \frac{13042424901890828763913252938364}{11067025627333589241951889794375} a^{16} + \frac{241721233554880073993930608185938}{11067025627333589241951889794375} a^{15} + \frac{14078933854192511205209411717258}{11067025627333589241951889794375} a^{14} + \frac{2228963200311707491385967376228}{11067025627333589241951889794375} a^{13} + \frac{6012642027654948905878279478618}{3689008542444529747317296598125} a^{12} - \frac{1110007580288268694461462120128}{2213405125466717848390377958875} a^{11} + \frac{1665697328870983065015768434626}{2213405125466717848390377958875} a^{10} - \frac{135710326507959020728615729172}{442681025093343569678075591775} a^{9} - \frac{281114000279573981141116405284301}{11067025627333589241951889794375} a^{8} - \frac{8635479601964470061733153778}{88536205018668713935615118355} a^{7} + \frac{21260848854890643124740488086}{88536205018668713935615118355} a^{6} + \frac{482520741169148269375554386}{5902413667911247595707674557} a^{5} + \frac{169638712872675875891205578}{5902413667911247595707674557} a^{4} + \frac{165775971782595969798806210}{17707241003733742787123023671} a^{3} + \frac{20923180904599491333829910}{5902413667911247595707674557} a^{2} - \frac{51175528908352541797489443215}{17707241003733742787123023671} a + \frac{8047377270999804359165350}{17707241003733742787123023671} \)  (order $14$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!06}{55\!\cdots\!75}a^{35}-\frac{14\!\cdots\!78}{55\!\cdots\!75}a^{34}+\frac{13\!\cdots\!72}{55\!\cdots\!75}a^{33}-\frac{14\!\cdots\!16}{55\!\cdots\!75}a^{32}+\frac{11\!\cdots\!12}{55\!\cdots\!75}a^{31}-\frac{14\!\cdots\!76}{55\!\cdots\!75}a^{30}+\frac{23\!\cdots\!87}{16\!\cdots\!25}a^{29}-\frac{16\!\cdots\!68}{55\!\cdots\!75}a^{28}+\frac{18\!\cdots\!44}{36\!\cdots\!25}a^{27}-\frac{16\!\cdots\!38}{55\!\cdots\!75}a^{26}+\frac{26\!\cdots\!88}{55\!\cdots\!75}a^{25}-\frac{31\!\cdots\!64}{11\!\cdots\!75}a^{24}+\frac{22\!\cdots\!56}{55\!\cdots\!75}a^{23}-\frac{89\!\cdots\!11}{33\!\cdots\!25}a^{22}+\frac{82\!\cdots\!22}{55\!\cdots\!75}a^{21}-\frac{16\!\cdots\!68}{55\!\cdots\!75}a^{20}+\frac{21\!\cdots\!42}{55\!\cdots\!75}a^{19}-\frac{44\!\cdots\!74}{55\!\cdots\!75}a^{18}-\frac{66\!\cdots\!24}{55\!\cdots\!75}a^{17}-\frac{44\!\cdots\!56}{55\!\cdots\!75}a^{16}-\frac{82\!\cdots\!52}{55\!\cdots\!75}a^{15}-\frac{47\!\cdots\!82}{55\!\cdots\!75}a^{14}-\frac{75\!\cdots\!12}{55\!\cdots\!75}a^{13}-\frac{61\!\cdots\!66}{55\!\cdots\!75}a^{12}+\frac{37\!\cdots\!12}{11\!\cdots\!75}a^{11}-\frac{56\!\cdots\!54}{11\!\cdots\!75}a^{10}+\frac{46\!\cdots\!88}{22\!\cdots\!75}a^{9}+\frac{86\!\cdots\!79}{55\!\cdots\!75}a^{8}+\frac{29\!\cdots\!62}{44\!\cdots\!35}a^{7}-\frac{72\!\cdots\!94}{44\!\cdots\!35}a^{6}-\frac{49\!\cdots\!82}{89\!\cdots\!07}a^{5}-\frac{17\!\cdots\!86}{89\!\cdots\!07}a^{4}-\frac{56\!\cdots\!90}{89\!\cdots\!07}a^{3}-\frac{21\!\cdots\!70}{89\!\cdots\!07}a^{2}+\frac{47\!\cdots\!51}{26\!\cdots\!21}a-\frac{27\!\cdots\!50}{89\!\cdots\!07}$, $\frac{14\!\cdots\!94}{11\!\cdots\!75}a^{35}-\frac{18\!\cdots\!01}{11\!\cdots\!75}a^{34}+\frac{19\!\cdots\!16}{11\!\cdots\!75}a^{33}-\frac{23\!\cdots\!87}{11\!\cdots\!75}a^{32}+\frac{40\!\cdots\!56}{22\!\cdots\!75}a^{31}-\frac{20\!\cdots\!12}{11\!\cdots\!75}a^{30}+\frac{19\!\cdots\!42}{11\!\cdots\!75}a^{29}-\frac{13\!\cdots\!52}{36\!\cdots\!25}a^{28}+\frac{22\!\cdots\!53}{11\!\cdots\!75}a^{27}-\frac{89\!\cdots\!78}{22\!\cdots\!75}a^{26}+\frac{22\!\cdots\!72}{11\!\cdots\!75}a^{25}-\frac{13\!\cdots\!68}{36\!\cdots\!25}a^{24}+\frac{21\!\cdots\!36}{11\!\cdots\!75}a^{23}-\frac{35\!\cdots\!48}{11\!\cdots\!75}a^{22}+\frac{81\!\cdots\!78}{11\!\cdots\!75}a^{21}-\frac{13\!\cdots\!89}{11\!\cdots\!75}a^{20}+\frac{87\!\cdots\!62}{36\!\cdots\!25}a^{19}-\frac{24\!\cdots\!92}{73\!\cdots\!25}a^{18}+\frac{71\!\cdots\!08}{11\!\cdots\!75}a^{17}-\frac{15\!\cdots\!79}{11\!\cdots\!75}a^{16}+\frac{21\!\cdots\!02}{36\!\cdots\!25}a^{15}-\frac{32\!\cdots\!14}{11\!\cdots\!75}a^{14}+\frac{64\!\cdots\!74}{11\!\cdots\!75}a^{13}-\frac{72\!\cdots\!14}{73\!\cdots\!25}a^{12}+\frac{28\!\cdots\!76}{36\!\cdots\!25}a^{11}-\frac{41\!\cdots\!94}{88\!\cdots\!55}a^{10}+\frac{11\!\cdots\!94}{22\!\cdots\!75}a^{9}-\frac{12\!\cdots\!67}{36\!\cdots\!25}a^{8}+\frac{13\!\cdots\!14}{44\!\cdots\!75}a^{7}-\frac{10\!\cdots\!48}{73\!\cdots\!25}a^{6}+\frac{13\!\cdots\!66}{88\!\cdots\!55}a^{5}-\frac{79\!\cdots\!61}{44\!\cdots\!75}a^{4}+\frac{33\!\cdots\!54}{17\!\cdots\!71}a^{3}-\frac{69\!\cdots\!03}{29\!\cdots\!85}a^{2}-\frac{93\!\cdots\!35}{17\!\cdots\!71}a-\frac{24\!\cdots\!07}{59\!\cdots\!57}$, $\frac{32\!\cdots\!14}{11\!\cdots\!75}a^{35}-\frac{41\!\cdots\!82}{11\!\cdots\!75}a^{34}+\frac{12\!\cdots\!56}{36\!\cdots\!25}a^{33}-\frac{43\!\cdots\!04}{11\!\cdots\!75}a^{32}+\frac{10\!\cdots\!76}{36\!\cdots\!25}a^{31}-\frac{43\!\cdots\!44}{11\!\cdots\!75}a^{30}+\frac{22\!\cdots\!26}{11\!\cdots\!75}a^{29}-\frac{47\!\cdots\!92}{11\!\cdots\!75}a^{28}+\frac{28\!\cdots\!12}{36\!\cdots\!25}a^{27}-\frac{15\!\cdots\!74}{36\!\cdots\!25}a^{26}+\frac{76\!\cdots\!72}{11\!\cdots\!75}a^{25}-\frac{92\!\cdots\!16}{22\!\cdots\!75}a^{24}+\frac{64\!\cdots\!64}{11\!\cdots\!75}a^{23}-\frac{29\!\cdots\!76}{73\!\cdots\!25}a^{22}+\frac{80\!\cdots\!06}{36\!\cdots\!25}a^{21}-\frac{49\!\cdots\!92}{11\!\cdots\!75}a^{20}+\frac{21\!\cdots\!66}{36\!\cdots\!25}a^{19}-\frac{13\!\cdots\!06}{11\!\cdots\!75}a^{18}-\frac{19\!\cdots\!56}{11\!\cdots\!75}a^{17}-\frac{13\!\cdots\!64}{11\!\cdots\!75}a^{16}-\frac{24\!\cdots\!38}{11\!\cdots\!75}a^{15}-\frac{14\!\cdots\!58}{11\!\cdots\!75}a^{14}-\frac{22\!\cdots\!28}{11\!\cdots\!75}a^{13}-\frac{60\!\cdots\!18}{36\!\cdots\!25}a^{12}+\frac{11\!\cdots\!28}{22\!\cdots\!75}a^{11}-\frac{16\!\cdots\!26}{22\!\cdots\!75}a^{10}+\frac{13\!\cdots\!72}{44\!\cdots\!75}a^{9}+\frac{28\!\cdots\!01}{11\!\cdots\!75}a^{8}+\frac{86\!\cdots\!78}{88\!\cdots\!55}a^{7}-\frac{21\!\cdots\!86}{88\!\cdots\!55}a^{6}-\frac{48\!\cdots\!86}{59\!\cdots\!57}a^{5}-\frac{16\!\cdots\!78}{59\!\cdots\!57}a^{4}-\frac{16\!\cdots\!10}{17\!\cdots\!71}a^{3}-\frac{20\!\cdots\!10}{59\!\cdots\!57}a^{2}+\frac{51\!\cdots\!15}{17\!\cdots\!71}a+\frac{17\!\cdots\!21}{17\!\cdots\!71}$, $\frac{58\!\cdots\!02}{83\!\cdots\!25}a^{35}+\frac{93\!\cdots\!12}{55\!\cdots\!75}a^{34}+\frac{15\!\cdots\!24}{18\!\cdots\!25}a^{33}+\frac{15\!\cdots\!43}{55\!\cdots\!75}a^{32}+\frac{15\!\cdots\!88}{18\!\cdots\!25}a^{31}+\frac{17\!\cdots\!76}{36\!\cdots\!25}a^{30}+\frac{46\!\cdots\!84}{55\!\cdots\!75}a^{29}-\frac{46\!\cdots\!58}{83\!\cdots\!25}a^{28}+\frac{45\!\cdots\!12}{55\!\cdots\!75}a^{27}-\frac{30\!\cdots\!96}{55\!\cdots\!75}a^{26}+\frac{89\!\cdots\!64}{11\!\cdots\!75}a^{25}-\frac{20\!\cdots\!29}{55\!\cdots\!75}a^{24}+\frac{43\!\cdots\!68}{55\!\cdots\!75}a^{23}-\frac{30\!\cdots\!64}{18\!\cdots\!25}a^{22}+\frac{26\!\cdots\!29}{16\!\cdots\!25}a^{21}-\frac{59\!\cdots\!76}{55\!\cdots\!75}a^{20}+\frac{22\!\cdots\!88}{55\!\cdots\!75}a^{19}-\frac{91\!\cdots\!34}{18\!\cdots\!25}a^{18}+\frac{25\!\cdots\!99}{22\!\cdots\!75}a^{17}+\frac{21\!\cdots\!04}{55\!\cdots\!75}a^{16}+\frac{18\!\cdots\!08}{55\!\cdots\!75}a^{15}+\frac{32\!\cdots\!36}{83\!\cdots\!25}a^{14}+\frac{21\!\cdots\!48}{55\!\cdots\!75}a^{13}+\frac{21\!\cdots\!92}{55\!\cdots\!75}a^{12}+\frac{15\!\cdots\!76}{36\!\cdots\!25}a^{11}+\frac{17\!\cdots\!69}{55\!\cdots\!75}a^{10}-\frac{15\!\cdots\!12}{22\!\cdots\!75}a^{9}+\frac{23\!\cdots\!12}{22\!\cdots\!75}a^{8}+\frac{52\!\cdots\!04}{33\!\cdots\!25}a^{7}+\frac{13\!\cdots\!76}{14\!\cdots\!25}a^{6}+\frac{26\!\cdots\!68}{88\!\cdots\!55}a^{5}+\frac{36\!\cdots\!71}{44\!\cdots\!75}a^{4}+\frac{49\!\cdots\!27}{17\!\cdots\!71}a^{3}+\frac{22\!\cdots\!08}{17\!\cdots\!71}a^{2}+\frac{64\!\cdots\!40}{17\!\cdots\!71}a+\frac{46\!\cdots\!08}{26\!\cdots\!21}$, $\frac{71\!\cdots\!03}{27\!\cdots\!75}a^{35}-\frac{84\!\cdots\!48}{27\!\cdots\!75}a^{34}+\frac{28\!\cdots\!87}{83\!\cdots\!25}a^{33}-\frac{10\!\cdots\!51}{27\!\cdots\!75}a^{32}+\frac{10\!\cdots\!68}{27\!\cdots\!75}a^{31}-\frac{27\!\cdots\!38}{83\!\cdots\!25}a^{30}+\frac{98\!\cdots\!68}{27\!\cdots\!75}a^{29}-\frac{58\!\cdots\!69}{83\!\cdots\!25}a^{28}+\frac{11\!\cdots\!19}{27\!\cdots\!75}a^{27}-\frac{41\!\cdots\!36}{55\!\cdots\!75}a^{26}+\frac{33\!\cdots\!07}{83\!\cdots\!25}a^{25}-\frac{80\!\cdots\!76}{11\!\cdots\!25}a^{24}+\frac{21\!\cdots\!64}{55\!\cdots\!75}a^{23}-\frac{49\!\cdots\!04}{83\!\cdots\!25}a^{22}+\frac{38\!\cdots\!91}{27\!\cdots\!75}a^{21}-\frac{61\!\cdots\!46}{27\!\cdots\!75}a^{20}+\frac{37\!\cdots\!72}{83\!\cdots\!25}a^{19}-\frac{50\!\cdots\!23}{83\!\cdots\!25}a^{18}+\frac{33\!\cdots\!57}{27\!\cdots\!75}a^{17}-\frac{80\!\cdots\!14}{83\!\cdots\!25}a^{16}+\frac{95\!\cdots\!44}{83\!\cdots\!25}a^{15}+\frac{11\!\cdots\!94}{83\!\cdots\!25}a^{14}+\frac{32\!\cdots\!76}{27\!\cdots\!75}a^{13}-\frac{60\!\cdots\!72}{83\!\cdots\!25}a^{12}+\frac{12\!\cdots\!19}{83\!\cdots\!25}a^{11}-\frac{39\!\cdots\!26}{55\!\cdots\!75}a^{10}+\frac{14\!\cdots\!81}{16\!\cdots\!25}a^{9}-\frac{78\!\cdots\!61}{16\!\cdots\!25}a^{8}+\frac{16\!\cdots\!64}{33\!\cdots\!25}a^{7}-\frac{22\!\cdots\!54}{11\!\cdots\!75}a^{6}+\frac{59\!\cdots\!47}{22\!\cdots\!75}a^{5}+\frac{13\!\cdots\!04}{66\!\cdots\!25}a^{4}+\frac{14\!\cdots\!43}{44\!\cdots\!35}a^{3}+\frac{27\!\cdots\!67}{26\!\cdots\!21}a^{2}+\frac{29\!\cdots\!36}{26\!\cdots\!21}a+\frac{26\!\cdots\!40}{26\!\cdots\!21}$, $\frac{25\!\cdots\!87}{27\!\cdots\!75}a^{35}-\frac{63\!\cdots\!68}{27\!\cdots\!75}a^{34}+\frac{35\!\cdots\!22}{27\!\cdots\!75}a^{33}-\frac{77\!\cdots\!12}{27\!\cdots\!75}a^{32}+\frac{37\!\cdots\!64}{27\!\cdots\!75}a^{31}-\frac{29\!\cdots\!51}{11\!\cdots\!75}a^{30}+\frac{35\!\cdots\!84}{27\!\cdots\!75}a^{29}-\frac{11\!\cdots\!63}{27\!\cdots\!75}a^{28}+\frac{44\!\cdots\!87}{27\!\cdots\!75}a^{27}-\frac{11\!\cdots\!96}{27\!\cdots\!75}a^{26}+\frac{90\!\cdots\!76}{55\!\cdots\!75}a^{25}-\frac{33\!\cdots\!32}{83\!\cdots\!25}a^{24}+\frac{42\!\cdots\!28}{27\!\cdots\!75}a^{23}-\frac{10\!\cdots\!77}{27\!\cdots\!75}a^{22}+\frac{34\!\cdots\!07}{55\!\cdots\!75}a^{21}-\frac{32\!\cdots\!36}{27\!\cdots\!75}a^{20}+\frac{56\!\cdots\!33}{27\!\cdots\!75}a^{19}-\frac{89\!\cdots\!32}{27\!\cdots\!75}a^{18}+\frac{85\!\cdots\!58}{16\!\cdots\!25}a^{17}-\frac{85\!\cdots\!11}{27\!\cdots\!75}a^{16}-\frac{19\!\cdots\!37}{27\!\cdots\!75}a^{15}-\frac{11\!\cdots\!53}{33\!\cdots\!25}a^{14}-\frac{88\!\cdots\!77}{27\!\cdots\!75}a^{13}-\frac{13\!\cdots\!03}{27\!\cdots\!75}a^{12}+\frac{88\!\cdots\!07}{55\!\cdots\!75}a^{11}-\frac{68\!\cdots\!03}{83\!\cdots\!25}a^{10}+\frac{10\!\cdots\!13}{11\!\cdots\!75}a^{9}-\frac{14\!\cdots\!58}{11\!\cdots\!75}a^{8}+\frac{81\!\cdots\!42}{22\!\cdots\!75}a^{7}-\frac{15\!\cdots\!02}{22\!\cdots\!75}a^{6}-\frac{10\!\cdots\!32}{44\!\cdots\!35}a^{5}-\frac{36\!\cdots\!38}{44\!\cdots\!35}a^{4}-\frac{18\!\cdots\!94}{26\!\cdots\!21}a^{3}-\frac{59\!\cdots\!97}{59\!\cdots\!57}a^{2}-\frac{22\!\cdots\!85}{89\!\cdots\!07}a-\frac{11\!\cdots\!40}{89\!\cdots\!07}$, $\frac{16\!\cdots\!82}{83\!\cdots\!25}a^{35}-\frac{84\!\cdots\!41}{27\!\cdots\!75}a^{34}+\frac{22\!\cdots\!57}{83\!\cdots\!25}a^{33}-\frac{31\!\cdots\!17}{83\!\cdots\!25}a^{32}+\frac{23\!\cdots\!44}{83\!\cdots\!25}a^{31}-\frac{57\!\cdots\!88}{16\!\cdots\!25}a^{30}+\frac{23\!\cdots\!54}{83\!\cdots\!25}a^{29}-\frac{52\!\cdots\!68}{83\!\cdots\!25}a^{28}+\frac{27\!\cdots\!87}{83\!\cdots\!25}a^{27}-\frac{56\!\cdots\!16}{83\!\cdots\!25}a^{26}+\frac{18\!\cdots\!48}{55\!\cdots\!75}a^{25}-\frac{52\!\cdots\!29}{83\!\cdots\!25}a^{24}+\frac{87\!\cdots\!36}{27\!\cdots\!75}a^{23}-\frac{45\!\cdots\!52}{83\!\cdots\!25}a^{22}+\frac{65\!\cdots\!58}{55\!\cdots\!75}a^{21}-\frac{16\!\cdots\!11}{83\!\cdots\!25}a^{20}+\frac{10\!\cdots\!46}{27\!\cdots\!75}a^{19}-\frac{45\!\cdots\!72}{83\!\cdots\!25}a^{18}+\frac{17\!\cdots\!03}{16\!\cdots\!25}a^{17}-\frac{24\!\cdots\!61}{83\!\cdots\!25}a^{16}+\frac{20\!\cdots\!06}{27\!\cdots\!75}a^{15}-\frac{12\!\cdots\!34}{83\!\cdots\!25}a^{14}+\frac{62\!\cdots\!38}{83\!\cdots\!25}a^{13}-\frac{85\!\cdots\!71}{27\!\cdots\!75}a^{12}+\frac{17\!\cdots\!24}{16\!\cdots\!25}a^{11}-\frac{76\!\cdots\!21}{83\!\cdots\!25}a^{10}+\frac{23\!\cdots\!94}{33\!\cdots\!25}a^{9}-\frac{26\!\cdots\!33}{55\!\cdots\!75}a^{8}+\frac{27\!\cdots\!58}{66\!\cdots\!25}a^{7}-\frac{73\!\cdots\!56}{33\!\cdots\!25}a^{6}+\frac{28\!\cdots\!22}{13\!\cdots\!05}a^{5}-\frac{17\!\cdots\!39}{66\!\cdots\!25}a^{4}-\frac{74\!\cdots\!49}{89\!\cdots\!07}a^{3}-\frac{46\!\cdots\!91}{13\!\cdots\!05}a^{2}-\frac{21\!\cdots\!25}{26\!\cdots\!21}a-\frac{15\!\cdots\!79}{26\!\cdots\!21}$, $\frac{82\!\cdots\!12}{83\!\cdots\!25}a^{35}+\frac{18\!\cdots\!12}{83\!\cdots\!25}a^{34}-\frac{15\!\cdots\!28}{83\!\cdots\!25}a^{33}+\frac{23\!\cdots\!08}{83\!\cdots\!25}a^{32}-\frac{72\!\cdots\!84}{33\!\cdots\!25}a^{31}+\frac{97\!\cdots\!98}{33\!\cdots\!25}a^{30}-\frac{49\!\cdots\!97}{27\!\cdots\!75}a^{29}+\frac{24\!\cdots\!17}{83\!\cdots\!25}a^{28}-\frac{40\!\cdots\!83}{83\!\cdots\!25}a^{27}+\frac{87\!\cdots\!58}{27\!\cdots\!75}a^{26}-\frac{87\!\cdots\!37}{16\!\cdots\!25}a^{25}+\frac{26\!\cdots\!31}{83\!\cdots\!25}a^{24}-\frac{39\!\cdots\!12}{83\!\cdots\!25}a^{23}+\frac{84\!\cdots\!71}{27\!\cdots\!75}a^{22}-\frac{17\!\cdots\!91}{44\!\cdots\!75}a^{21}+\frac{83\!\cdots\!69}{83\!\cdots\!25}a^{20}-\frac{12\!\cdots\!52}{83\!\cdots\!25}a^{19}+\frac{87\!\cdots\!56}{27\!\cdots\!75}a^{18}-\frac{65\!\cdots\!52}{16\!\cdots\!25}a^{17}+\frac{71\!\cdots\!29}{83\!\cdots\!25}a^{16}+\frac{62\!\cdots\!86}{27\!\cdots\!75}a^{15}+\frac{75\!\cdots\!41}{83\!\cdots\!25}a^{14}+\frac{29\!\cdots\!48}{83\!\cdots\!25}a^{13}+\frac{81\!\cdots\!47}{83\!\cdots\!25}a^{12}+\frac{13\!\cdots\!01}{55\!\cdots\!75}a^{11}+\frac{10\!\cdots\!59}{83\!\cdots\!25}a^{10}-\frac{87\!\cdots\!59}{33\!\cdots\!25}a^{9}+\frac{28\!\cdots\!19}{55\!\cdots\!75}a^{8}-\frac{44\!\cdots\!03}{22\!\cdots\!75}a^{7}+\frac{33\!\cdots\!77}{11\!\cdots\!75}a^{6}-\frac{63\!\cdots\!01}{13\!\cdots\!05}a^{5}+\frac{11\!\cdots\!27}{66\!\cdots\!25}a^{4}+\frac{20\!\cdots\!66}{26\!\cdots\!21}a^{3}+\frac{11\!\cdots\!88}{44\!\cdots\!35}a^{2}+\frac{60\!\cdots\!25}{89\!\cdots\!07}a-\frac{29\!\cdots\!90}{26\!\cdots\!21}$, $\frac{18\!\cdots\!39}{55\!\cdots\!75}a^{35}-\frac{49\!\cdots\!11}{16\!\cdots\!25}a^{34}+\frac{23\!\cdots\!98}{55\!\cdots\!75}a^{33}-\frac{19\!\cdots\!64}{55\!\cdots\!75}a^{32}+\frac{74\!\cdots\!94}{16\!\cdots\!25}a^{31}-\frac{16\!\cdots\!69}{55\!\cdots\!75}a^{30}+\frac{24\!\cdots\!16}{55\!\cdots\!75}a^{29}-\frac{12\!\cdots\!21}{16\!\cdots\!25}a^{28}+\frac{80\!\cdots\!58}{16\!\cdots\!25}a^{27}-\frac{13\!\cdots\!71}{16\!\cdots\!25}a^{26}+\frac{53\!\cdots\!51}{11\!\cdots\!75}a^{25}-\frac{81\!\cdots\!08}{11\!\cdots\!75}a^{24}+\frac{25\!\cdots\!74}{55\!\cdots\!75}a^{23}-\frac{20\!\cdots\!97}{33\!\cdots\!25}a^{22}+\frac{25\!\cdots\!49}{16\!\cdots\!25}a^{21}-\frac{12\!\cdots\!07}{55\!\cdots\!75}a^{20}+\frac{79\!\cdots\!64}{16\!\cdots\!25}a^{19}-\frac{98\!\cdots\!28}{16\!\cdots\!25}a^{18}+\frac{21\!\cdots\!32}{16\!\cdots\!25}a^{17}+\frac{21\!\cdots\!86}{55\!\cdots\!75}a^{16}+\frac{21\!\cdots\!01}{16\!\cdots\!25}a^{15}+\frac{28\!\cdots\!67}{55\!\cdots\!75}a^{14}+\frac{79\!\cdots\!37}{55\!\cdots\!75}a^{13}+\frac{55\!\cdots\!63}{16\!\cdots\!25}a^{12}+\frac{60\!\cdots\!22}{33\!\cdots\!25}a^{11}-\frac{14\!\cdots\!33}{33\!\cdots\!25}a^{10}+\frac{76\!\cdots\!89}{11\!\cdots\!75}a^{9}-\frac{44\!\cdots\!62}{16\!\cdots\!25}a^{8}+\frac{97\!\cdots\!04}{22\!\cdots\!75}a^{7}-\frac{22\!\cdots\!22}{33\!\cdots\!25}a^{6}+\frac{32\!\cdots\!28}{13\!\cdots\!05}a^{5}+\frac{72\!\cdots\!38}{66\!\cdots\!25}a^{4}+\frac{76\!\cdots\!82}{26\!\cdots\!21}a^{3}-\frac{59\!\cdots\!64}{44\!\cdots\!35}a^{2}+\frac{73\!\cdots\!35}{26\!\cdots\!21}a+\frac{17\!\cdots\!98}{26\!\cdots\!21}$, $\frac{26\!\cdots\!81}{16\!\cdots\!25}a^{35}-\frac{72\!\cdots\!29}{55\!\cdots\!75}a^{34}+\frac{33\!\cdots\!74}{16\!\cdots\!25}a^{33}-\frac{33\!\cdots\!41}{22\!\cdots\!75}a^{32}+\frac{34\!\cdots\!48}{16\!\cdots\!25}a^{31}-\frac{66\!\cdots\!36}{55\!\cdots\!75}a^{30}+\frac{34\!\cdots\!28}{16\!\cdots\!25}a^{29}-\frac{57\!\cdots\!27}{16\!\cdots\!25}a^{28}+\frac{12\!\cdots\!48}{55\!\cdots\!75}a^{27}-\frac{61\!\cdots\!12}{16\!\cdots\!25}a^{26}+\frac{37\!\cdots\!22}{16\!\cdots\!25}a^{25}-\frac{18\!\cdots\!12}{55\!\cdots\!75}a^{24}+\frac{36\!\cdots\!48}{16\!\cdots\!25}a^{23}-\frac{15\!\cdots\!72}{55\!\cdots\!75}a^{22}+\frac{11\!\cdots\!68}{16\!\cdots\!25}a^{21}-\frac{55\!\cdots\!43}{55\!\cdots\!75}a^{20}+\frac{13\!\cdots\!32}{66\!\cdots\!25}a^{19}-\frac{82\!\cdots\!88}{33\!\cdots\!25}a^{18}+\frac{92\!\cdots\!81}{16\!\cdots\!25}a^{17}+\frac{18\!\cdots\!93}{66\!\cdots\!25}a^{16}+\frac{89\!\cdots\!32}{16\!\cdots\!25}a^{15}+\frac{37\!\cdots\!66}{11\!\cdots\!75}a^{14}+\frac{35\!\cdots\!92}{55\!\cdots\!75}a^{13}+\frac{78\!\cdots\!04}{33\!\cdots\!25}a^{12}+\frac{13\!\cdots\!94}{16\!\cdots\!25}a^{11}-\frac{15\!\cdots\!51}{16\!\cdots\!25}a^{10}+\frac{73\!\cdots\!24}{33\!\cdots\!25}a^{9}-\frac{56\!\cdots\!28}{13\!\cdots\!05}a^{8}+\frac{82\!\cdots\!78}{66\!\cdots\!25}a^{7}+\frac{38\!\cdots\!74}{11\!\cdots\!75}a^{6}+\frac{30\!\cdots\!94}{44\!\cdots\!35}a^{5}+\frac{63\!\cdots\!11}{66\!\cdots\!25}a^{4}-\frac{20\!\cdots\!92}{26\!\cdots\!21}a^{3}+\frac{14\!\cdots\!59}{13\!\cdots\!05}a^{2}+\frac{25\!\cdots\!10}{26\!\cdots\!21}a-\frac{33\!\cdots\!27}{26\!\cdots\!21}$, $\frac{12\!\cdots\!59}{27\!\cdots\!75}a^{35}-\frac{28\!\cdots\!23}{83\!\cdots\!25}a^{34}+\frac{15\!\cdots\!39}{27\!\cdots\!75}a^{33}-\frac{33\!\cdots\!27}{83\!\cdots\!25}a^{32}+\frac{16\!\cdots\!98}{27\!\cdots\!75}a^{31}-\frac{17\!\cdots\!12}{55\!\cdots\!75}a^{30}+\frac{48\!\cdots\!24}{83\!\cdots\!25}a^{29}-\frac{78\!\cdots\!93}{83\!\cdots\!25}a^{28}+\frac{17\!\cdots\!39}{27\!\cdots\!75}a^{27}-\frac{84\!\cdots\!41}{83\!\cdots\!25}a^{26}+\frac{10\!\cdots\!89}{16\!\cdots\!25}a^{25}-\frac{75\!\cdots\!39}{83\!\cdots\!25}a^{24}+\frac{50\!\cdots\!48}{83\!\cdots\!25}a^{23}-\frac{20\!\cdots\!04}{27\!\cdots\!75}a^{22}+\frac{10\!\cdots\!28}{55\!\cdots\!75}a^{21}-\frac{23\!\cdots\!31}{83\!\cdots\!25}a^{20}+\frac{50\!\cdots\!33}{83\!\cdots\!25}a^{19}-\frac{20\!\cdots\!54}{27\!\cdots\!75}a^{18}+\frac{27\!\cdots\!72}{16\!\cdots\!25}a^{17}+\frac{21\!\cdots\!36}{34\!\cdots\!75}a^{16}+\frac{15\!\cdots\!18}{83\!\cdots\!25}a^{15}+\frac{73\!\cdots\!46}{83\!\cdots\!25}a^{14}+\frac{16\!\cdots\!78}{83\!\cdots\!25}a^{13}+\frac{53\!\cdots\!27}{83\!\cdots\!25}a^{12}+\frac{13\!\cdots\!99}{55\!\cdots\!75}a^{11}-\frac{25\!\cdots\!06}{83\!\cdots\!25}a^{10}+\frac{31\!\cdots\!49}{33\!\cdots\!25}a^{9}-\frac{49\!\cdots\!61}{16\!\cdots\!25}a^{8}+\frac{36\!\cdots\!26}{66\!\cdots\!25}a^{7}-\frac{10\!\cdots\!34}{33\!\cdots\!25}a^{6}+\frac{44\!\cdots\!14}{13\!\cdots\!05}a^{5}+\frac{12\!\cdots\!71}{66\!\cdots\!25}a^{4}+\frac{17\!\cdots\!01}{26\!\cdots\!21}a^{3}+\frac{34\!\cdots\!98}{26\!\cdots\!21}a^{2}+\frac{63\!\cdots\!05}{26\!\cdots\!21}a-\frac{29\!\cdots\!25}{26\!\cdots\!21}$, $\frac{52\!\cdots\!66}{83\!\cdots\!25}a^{35}-\frac{64\!\cdots\!79}{83\!\cdots\!25}a^{34}+\frac{28\!\cdots\!84}{33\!\cdots\!25}a^{33}-\frac{26\!\cdots\!92}{27\!\cdots\!75}a^{32}+\frac{73\!\cdots\!12}{83\!\cdots\!25}a^{31}-\frac{11\!\cdots\!67}{13\!\cdots\!05}a^{30}+\frac{24\!\cdots\!24}{27\!\cdots\!75}a^{29}-\frac{48\!\cdots\!58}{27\!\cdots\!75}a^{28}+\frac{27\!\cdots\!57}{27\!\cdots\!75}a^{27}-\frac{15\!\cdots\!88}{83\!\cdots\!25}a^{26}+\frac{16\!\cdots\!62}{16\!\cdots\!25}a^{25}-\frac{47\!\cdots\!44}{27\!\cdots\!75}a^{24}+\frac{78\!\cdots\!84}{83\!\cdots\!25}a^{23}-\frac{12\!\cdots\!71}{83\!\cdots\!25}a^{22}+\frac{11\!\cdots\!42}{33\!\cdots\!25}a^{21}-\frac{45\!\cdots\!23}{83\!\cdots\!25}a^{20}+\frac{90\!\cdots\!89}{83\!\cdots\!25}a^{19}-\frac{12\!\cdots\!06}{83\!\cdots\!25}a^{18}+\frac{48\!\cdots\!16}{16\!\cdots\!25}a^{17}-\frac{47\!\cdots\!21}{27\!\cdots\!75}a^{16}+\frac{20\!\cdots\!09}{83\!\cdots\!25}a^{15}+\frac{28\!\cdots\!53}{83\!\cdots\!25}a^{14}+\frac{21\!\cdots\!79}{83\!\cdots\!25}a^{13}-\frac{57\!\cdots\!29}{83\!\cdots\!25}a^{12}+\frac{56\!\cdots\!89}{16\!\cdots\!25}a^{11}-\frac{15\!\cdots\!03}{83\!\cdots\!25}a^{10}+\frac{10\!\cdots\!52}{55\!\cdots\!75}a^{9}-\frac{16\!\cdots\!71}{16\!\cdots\!25}a^{8}+\frac{32\!\cdots\!14}{33\!\cdots\!25}a^{7}-\frac{11\!\cdots\!58}{33\!\cdots\!25}a^{6}+\frac{60\!\cdots\!16}{13\!\cdots\!05}a^{5}+\frac{20\!\cdots\!66}{13\!\cdots\!05}a^{4}-\frac{33\!\cdots\!66}{26\!\cdots\!21}a^{3}+\frac{12\!\cdots\!94}{26\!\cdots\!21}a^{2}-\frac{32\!\cdots\!39}{26\!\cdots\!21}a+\frac{45\!\cdots\!60}{89\!\cdots\!07}$, $\frac{24\!\cdots\!08}{27\!\cdots\!75}a^{35}-\frac{12\!\cdots\!46}{83\!\cdots\!25}a^{34}+\frac{33\!\cdots\!03}{27\!\cdots\!75}a^{33}-\frac{15\!\cdots\!39}{83\!\cdots\!25}a^{32}+\frac{10\!\cdots\!68}{83\!\cdots\!25}a^{31}-\frac{28\!\cdots\!72}{16\!\cdots\!25}a^{30}+\frac{10\!\cdots\!28}{83\!\cdots\!25}a^{29}-\frac{24\!\cdots\!51}{83\!\cdots\!25}a^{28}+\frac{12\!\cdots\!99}{83\!\cdots\!25}a^{27}-\frac{89\!\cdots\!44}{27\!\cdots\!75}a^{26}+\frac{24\!\cdots\!24}{16\!\cdots\!25}a^{25}-\frac{82\!\cdots\!26}{27\!\cdots\!75}a^{24}+\frac{11\!\cdots\!96}{83\!\cdots\!25}a^{23}-\frac{21\!\cdots\!34}{83\!\cdots\!25}a^{22}+\frac{57\!\cdots\!14}{11\!\cdots\!75}a^{21}-\frac{25\!\cdots\!24}{27\!\cdots\!75}a^{20}+\frac{47\!\cdots\!42}{27\!\cdots\!75}a^{19}-\frac{20\!\cdots\!89}{83\!\cdots\!25}a^{18}+\frac{75\!\cdots\!11}{16\!\cdots\!25}a^{17}-\frac{41\!\cdots\!79}{27\!\cdots\!75}a^{16}+\frac{59\!\cdots\!22}{27\!\cdots\!75}a^{15}-\frac{32\!\cdots\!11}{27\!\cdots\!75}a^{14}+\frac{59\!\cdots\!82}{27\!\cdots\!75}a^{13}-\frac{61\!\cdots\!42}{27\!\cdots\!75}a^{12}+\frac{59\!\cdots\!36}{16\!\cdots\!25}a^{11}-\frac{41\!\cdots\!87}{83\!\cdots\!25}a^{10}+\frac{11\!\cdots\!13}{55\!\cdots\!75}a^{9}-\frac{10\!\cdots\!27}{55\!\cdots\!75}a^{8}+\frac{46\!\cdots\!69}{44\!\cdots\!35}a^{7}-\frac{27\!\cdots\!86}{33\!\cdots\!25}a^{6}+\frac{11\!\cdots\!13}{22\!\cdots\!75}a^{5}-\frac{22\!\cdots\!53}{22\!\cdots\!75}a^{4}-\frac{98\!\cdots\!60}{26\!\cdots\!21}a^{3}-\frac{57\!\cdots\!54}{88\!\cdots\!55}a^{2}-\frac{55\!\cdots\!36}{26\!\cdots\!21}a-\frac{17\!\cdots\!67}{11\!\cdots\!39}$, $\frac{81\!\cdots\!09}{27\!\cdots\!75}a^{35}-\frac{38\!\cdots\!73}{83\!\cdots\!25}a^{34}+\frac{10\!\cdots\!09}{27\!\cdots\!75}a^{33}-\frac{47\!\cdots\!17}{83\!\cdots\!25}a^{32}+\frac{11\!\cdots\!68}{27\!\cdots\!75}a^{31}-\frac{29\!\cdots\!11}{55\!\cdots\!75}a^{30}+\frac{33\!\cdots\!44}{83\!\cdots\!25}a^{29}-\frac{79\!\cdots\!43}{83\!\cdots\!25}a^{28}+\frac{39\!\cdots\!12}{83\!\cdots\!25}a^{27}-\frac{28\!\cdots\!77}{27\!\cdots\!75}a^{26}+\frac{26\!\cdots\!72}{55\!\cdots\!75}a^{25}-\frac{26\!\cdots\!98}{27\!\cdots\!75}a^{24}+\frac{38\!\cdots\!48}{83\!\cdots\!25}a^{23}-\frac{23\!\cdots\!69}{27\!\cdots\!75}a^{22}+\frac{28\!\cdots\!72}{16\!\cdots\!25}a^{21}-\frac{24\!\cdots\!91}{83\!\cdots\!25}a^{20}+\frac{15\!\cdots\!36}{27\!\cdots\!75}a^{19}-\frac{67\!\cdots\!42}{83\!\cdots\!25}a^{18}+\frac{16\!\cdots\!17}{11\!\cdots\!75}a^{17}-\frac{37\!\cdots\!31}{83\!\cdots\!25}a^{16}+\frac{76\!\cdots\!93}{83\!\cdots\!25}a^{15}-\frac{27\!\cdots\!09}{83\!\cdots\!25}a^{14}+\frac{76\!\cdots\!43}{83\!\cdots\!25}a^{13}-\frac{16\!\cdots\!06}{27\!\cdots\!75}a^{12}+\frac{45\!\cdots\!69}{33\!\cdots\!25}a^{11}-\frac{41\!\cdots\!57}{27\!\cdots\!75}a^{10}+\frac{11\!\cdots\!43}{13\!\cdots\!05}a^{9}-\frac{11\!\cdots\!12}{16\!\cdots\!25}a^{8}+\frac{17\!\cdots\!86}{33\!\cdots\!25}a^{7}-\frac{33\!\cdots\!28}{11\!\cdots\!75}a^{6}+\frac{10\!\cdots\!18}{44\!\cdots\!35}a^{5}-\frac{24\!\cdots\!71}{66\!\cdots\!25}a^{4}-\frac{22\!\cdots\!43}{44\!\cdots\!35}a^{3}-\frac{17\!\cdots\!83}{13\!\cdots\!05}a^{2}-\frac{10\!\cdots\!85}{26\!\cdots\!21}a-\frac{21\!\cdots\!43}{89\!\cdots\!07}$, $\frac{46\!\cdots\!87}{55\!\cdots\!75}a^{35}+\frac{18\!\cdots\!44}{27\!\cdots\!75}a^{34}+\frac{17\!\cdots\!26}{27\!\cdots\!75}a^{33}+\frac{69\!\cdots\!46}{83\!\cdots\!25}a^{32}+\frac{49\!\cdots\!36}{83\!\cdots\!25}a^{31}+\frac{24\!\cdots\!99}{27\!\cdots\!75}a^{30}+\frac{20\!\cdots\!27}{27\!\cdots\!75}a^{29}+\frac{21\!\cdots\!49}{27\!\cdots\!75}a^{28}-\frac{17\!\cdots\!97}{83\!\cdots\!25}a^{27}+\frac{68\!\cdots\!16}{83\!\cdots\!25}a^{26}-\frac{25\!\cdots\!73}{83\!\cdots\!25}a^{25}+\frac{69\!\cdots\!61}{83\!\cdots\!25}a^{24}-\frac{48\!\cdots\!92}{27\!\cdots\!75}a^{23}+\frac{13\!\cdots\!72}{16\!\cdots\!25}a^{22}-\frac{60\!\cdots\!52}{83\!\cdots\!25}a^{21}+\frac{20\!\cdots\!04}{83\!\cdots\!25}a^{20}-\frac{25\!\cdots\!79}{83\!\cdots\!25}a^{19}+\frac{21\!\cdots\!92}{27\!\cdots\!75}a^{18}-\frac{60\!\cdots\!64}{83\!\cdots\!25}a^{17}+\frac{72\!\cdots\!06}{27\!\cdots\!75}a^{16}+\frac{15\!\cdots\!53}{83\!\cdots\!25}a^{15}+\frac{27\!\cdots\!17}{83\!\cdots\!25}a^{14}+\frac{20\!\cdots\!47}{83\!\cdots\!25}a^{13}+\frac{30\!\cdots\!49}{83\!\cdots\!25}a^{12}+\frac{58\!\cdots\!68}{27\!\cdots\!75}a^{11}+\frac{35\!\cdots\!32}{83\!\cdots\!25}a^{10}+\frac{18\!\cdots\!12}{55\!\cdots\!75}a^{9}+\frac{23\!\cdots\!58}{16\!\cdots\!25}a^{8}-\frac{17\!\cdots\!66}{33\!\cdots\!25}a^{7}+\frac{48\!\cdots\!66}{66\!\cdots\!25}a^{6}+\frac{32\!\cdots\!32}{13\!\cdots\!05}a^{5}+\frac{35\!\cdots\!77}{66\!\cdots\!25}a^{4}+\frac{18\!\cdots\!08}{44\!\cdots\!35}a^{3}+\frac{15\!\cdots\!17}{89\!\cdots\!07}a^{2}+\frac{13\!\cdots\!51}{26\!\cdots\!21}a+\frac{19\!\cdots\!47}{26\!\cdots\!21}$, $\frac{17\!\cdots\!59}{83\!\cdots\!25}a^{35}-\frac{13\!\cdots\!71}{83\!\cdots\!25}a^{34}+\frac{11\!\cdots\!83}{27\!\cdots\!75}a^{33}-\frac{17\!\cdots\!79}{83\!\cdots\!25}a^{32}+\frac{39\!\cdots\!48}{83\!\cdots\!25}a^{31}-\frac{70\!\cdots\!03}{33\!\cdots\!25}a^{30}+\frac{12\!\cdots\!41}{27\!\cdots\!75}a^{29}-\frac{66\!\cdots\!07}{27\!\cdots\!75}a^{28}+\frac{18\!\cdots\!33}{27\!\cdots\!75}a^{27}-\frac{73\!\cdots\!64}{27\!\cdots\!75}a^{26}+\frac{23\!\cdots\!52}{33\!\cdots\!25}a^{25}-\frac{71\!\cdots\!91}{27\!\cdots\!75}a^{24}+\frac{54\!\cdots\!96}{83\!\cdots\!25}a^{23}-\frac{20\!\cdots\!44}{83\!\cdots\!25}a^{22}+\frac{22\!\cdots\!53}{55\!\cdots\!75}a^{21}-\frac{69\!\cdots\!67}{83\!\cdots\!25}a^{20}+\frac{38\!\cdots\!77}{27\!\cdots\!75}a^{19}-\frac{21\!\cdots\!79}{83\!\cdots\!25}a^{18}+\frac{61\!\cdots\!39}{16\!\cdots\!25}a^{17}-\frac{15\!\cdots\!29}{27\!\cdots\!75}a^{16}+\frac{19\!\cdots\!31}{83\!\cdots\!25}a^{15}-\frac{39\!\cdots\!53}{83\!\cdots\!25}a^{14}-\frac{25\!\cdots\!49}{83\!\cdots\!25}a^{13}-\frac{14\!\cdots\!07}{27\!\cdots\!75}a^{12}+\frac{14\!\cdots\!39}{16\!\cdots\!25}a^{11}-\frac{62\!\cdots\!22}{83\!\cdots\!25}a^{10}+\frac{20\!\cdots\!72}{55\!\cdots\!75}a^{9}-\frac{55\!\cdots\!17}{16\!\cdots\!25}a^{8}+\frac{41\!\cdots\!04}{22\!\cdots\!75}a^{7}-\frac{64\!\cdots\!98}{33\!\cdots\!25}a^{6}+\frac{13\!\cdots\!67}{22\!\cdots\!75}a^{5}-\frac{20\!\cdots\!91}{22\!\cdots\!75}a^{4}-\frac{85\!\cdots\!63}{26\!\cdots\!21}a^{3}+\frac{61\!\cdots\!66}{26\!\cdots\!21}a^{2}-\frac{19\!\cdots\!65}{26\!\cdots\!21}a-\frac{45\!\cdots\!55}{26\!\cdots\!21}$, $\frac{23\!\cdots\!47}{83\!\cdots\!25}a^{35}-\frac{30\!\cdots\!66}{83\!\cdots\!25}a^{34}+\frac{25\!\cdots\!63}{66\!\cdots\!25}a^{33}-\frac{37\!\cdots\!41}{83\!\cdots\!25}a^{32}+\frac{65\!\cdots\!68}{16\!\cdots\!25}a^{31}-\frac{33\!\cdots\!98}{83\!\cdots\!25}a^{30}+\frac{21\!\cdots\!11}{55\!\cdots\!75}a^{29}-\frac{66\!\cdots\!46}{83\!\cdots\!25}a^{28}+\frac{14\!\cdots\!73}{33\!\cdots\!25}a^{27}-\frac{14\!\cdots\!78}{16\!\cdots\!25}a^{26}+\frac{12\!\cdots\!69}{27\!\cdots\!75}a^{25}-\frac{22\!\cdots\!51}{27\!\cdots\!75}a^{24}+\frac{35\!\cdots\!52}{83\!\cdots\!25}a^{23}-\frac{57\!\cdots\!17}{83\!\cdots\!25}a^{22}+\frac{12\!\cdots\!33}{83\!\cdots\!25}a^{21}-\frac{21\!\cdots\!02}{83\!\cdots\!25}a^{20}+\frac{13\!\cdots\!98}{27\!\cdots\!75}a^{19}-\frac{57\!\cdots\!21}{83\!\cdots\!25}a^{18}+\frac{11\!\cdots\!26}{83\!\cdots\!25}a^{17}-\frac{49\!\cdots\!86}{27\!\cdots\!75}a^{16}+\frac{94\!\cdots\!96}{83\!\cdots\!25}a^{15}+\frac{18\!\cdots\!31}{27\!\cdots\!75}a^{14}+\frac{19\!\cdots\!04}{16\!\cdots\!25}a^{13}-\frac{37\!\cdots\!38}{27\!\cdots\!75}a^{12}+\frac{13\!\cdots\!59}{83\!\cdots\!25}a^{11}-\frac{77\!\cdots\!59}{83\!\cdots\!25}a^{10}+\frac{51\!\cdots\!47}{55\!\cdots\!75}a^{9}-\frac{86\!\cdots\!58}{16\!\cdots\!25}a^{8}+\frac{16\!\cdots\!79}{33\!\cdots\!25}a^{7}-\frac{24\!\cdots\!84}{11\!\cdots\!75}a^{6}+\frac{17\!\cdots\!51}{66\!\cdots\!25}a^{5}+\frac{11\!\cdots\!94}{66\!\cdots\!25}a^{4}+\frac{91\!\cdots\!94}{13\!\cdots\!05}a^{3}+\frac{27\!\cdots\!09}{26\!\cdots\!21}a^{2}-\frac{19\!\cdots\!55}{26\!\cdots\!21}a-\frac{44\!\cdots\!57}{26\!\cdots\!21}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 101496132655168.33 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 101496132655168.33 \cdot 18252}{14\cdot\sqrt{46670422643729575749553066692313283284467702220107608795166015625}}\cr\approx \mathstrut & 0.142675263214151 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 13*x^34 - 12*x^33 + 136*x^32 - 102*x^31 + 1346*x^30 - 2451*x^29 + 14878*x^28 - 26274*x^27 + 149073*x^26 - 238348*x^25 + 1434220*x^24 - 2018276*x^23 + 4847897*x^22 - 7515837*x^21 + 15331678*x^20 - 19685757*x^19 + 41203829*x^18 + 6109454*x^17 + 40517626*x^16 + 12539976*x^15 + 43737647*x^14 + 6924502*x^13 + 56036661*x^12 - 17241760*x^11 + 25873295*x^10 - 10539950*x^9 + 15076150*x^8 - 3353375*x^7 + 8256125*x^6 + 2810625*x^5 + 988125*x^4 + 321875*x^3 + 121875*x^2 + 31250*x + 15625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6^2$ (as 36T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_6^2$
Character table for $C_6^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}) \), 3.3.169.1, 3.3.8281.1, 3.3.8281.2, \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{-7})\), 6.0.1224552875.2, 6.0.60003090875.1, 6.0.60003090875.2, 6.0.2100875.1, 6.0.9796423.1, 6.6.3570125.1, 6.0.480024727.1, 6.6.8571870125.2, 6.0.480024727.2, 6.6.8571870125.1, \(\Q(\zeta_{7})\), 6.6.300125.1, 9.9.567869252041.1, 12.0.1499529743670765625.1, 12.0.3600370914553508265625.1, 12.0.3600370914553508265625.2, 12.0.4413675765625.1, 18.0.216033383169661016512360513671875.3, 18.0.110609092182866440454328583.1, 18.18.629834936354696841143908203125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{6}$ ${\href{/padicField/3.6.0.1}{6} }^{6}$ R R ${\href{/padicField/11.3.0.1}{3} }^{12}$ R ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.6.0.1}{6} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.3.0.1}{3} }^{12}$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display Deg $36$$6$$6$$30$
\(13\) Copy content Toggle raw display 13.6.4.3$x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$