Properties

Label 36.0.384...729.1
Degree $36$
Signature $[0, 18]$
Discriminant $3.850\times 10^{58}$
Root discriminant \(42.40\)
Ramified primes $3,31,71$
Class number $84$ (GRH)
Class group [84] (GRH)
Galois group $C_2\times A_4\times D_6$ (as 36T334)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809)
 
gp: K = bnfinit(y^36 + 69*y^34 + 2067*y^32 + 35559*y^30 + 392508*y^28 + 2947140*y^26 + 15578598*y^24 + 59180736*y^22 + 163426134*y^20 + 329538049*y^18 + 484507821*y^16 + 515577135*y^14 + 391420464*y^12 + 207035712*y^10 + 73469547*y^8 + 16457853*y^6 + 2099463*y^4 + 127086*y^2 + 2809, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809)
 

\( x^{36} + 69 x^{34} + 2067 x^{32} + 35559 x^{30} + 392508 x^{28} + 2947140 x^{26} + 15578598 x^{24} + \cdots + 2809 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(38495344535711815175714944020341529038620653445163760678729\) \(\medspace = 3^{62}\cdot 31^{12}\cdot 71^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(42.40\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{31/18}31^{1/2}71^{1/2}\approx 311.1851391885534$
Ramified primes:   \(3\), \(31\), \(71\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{23}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{24}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{25}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{26}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{27}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{28}-\frac{1}{4}a^{26}-\frac{1}{4}a^{20}-\frac{1}{4}a^{18}-\frac{1}{4}a^{16}-\frac{1}{4}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}+\frac{1}{4}a^{10}-\frac{1}{2}a^{8}+\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{29}-\frac{1}{4}a^{27}-\frac{1}{4}a^{21}-\frac{1}{4}a^{19}-\frac{1}{4}a^{17}-\frac{1}{4}a^{15}+\frac{1}{4}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{8}a^{30}-\frac{1}{8}a^{29}+\frac{1}{8}a^{27}+\frac{1}{8}a^{26}-\frac{1}{4}a^{25}-\frac{1}{4}a^{24}-\frac{1}{8}a^{22}+\frac{1}{8}a^{21}-\frac{1}{4}a^{20}+\frac{1}{8}a^{19}-\frac{1}{8}a^{17}+\frac{1}{8}a^{15}-\frac{1}{8}a^{14}+\frac{3}{8}a^{12}-\frac{3}{8}a^{11}+\frac{3}{8}a^{10}-\frac{1}{2}a^{9}-\frac{1}{8}a^{8}-\frac{3}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{8}a^{2}+\frac{3}{8}a-\frac{3}{8}$, $\frac{1}{8}a^{31}-\frac{1}{8}a^{29}-\frac{1}{8}a^{28}-\frac{1}{4}a^{27}+\frac{1}{8}a^{26}-\frac{1}{4}a^{24}-\frac{1}{8}a^{23}-\frac{1}{8}a^{21}+\frac{1}{8}a^{20}+\frac{1}{8}a^{19}+\frac{1}{8}a^{18}-\frac{1}{8}a^{17}-\frac{1}{8}a^{16}+\frac{1}{8}a^{14}+\frac{3}{8}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{3}{8}a^{10}+\frac{3}{8}a^{9}-\frac{1}{2}a^{7}+\frac{1}{8}a^{6}-\frac{1}{2}a^{4}-\frac{3}{8}a^{3}-\frac{1}{2}a+\frac{3}{8}$, $\frac{1}{16}a^{32}-\frac{1}{8}a^{28}+\frac{1}{16}a^{26}+\frac{1}{16}a^{24}+\frac{1}{8}a^{22}-\frac{1}{16}a^{20}+\frac{3}{16}a^{18}-\frac{1}{4}a^{16}-\frac{1}{8}a^{14}-\frac{5}{16}a^{12}-\frac{3}{8}a^{10}+\frac{7}{16}a^{8}-\frac{1}{2}a^{7}+\frac{3}{16}a^{6}-\frac{1}{2}a^{5}+\frac{1}{16}a^{4}-\frac{1}{2}a^{3}-\frac{7}{16}a^{2}-\frac{1}{2}a-\frac{3}{16}$, $\frac{1}{16}a^{33}-\frac{1}{8}a^{29}+\frac{1}{16}a^{27}+\frac{1}{16}a^{25}+\frac{1}{8}a^{23}-\frac{1}{16}a^{21}+\frac{3}{16}a^{19}-\frac{1}{4}a^{17}-\frac{1}{8}a^{15}-\frac{5}{16}a^{13}-\frac{3}{8}a^{11}+\frac{7}{16}a^{9}-\frac{1}{2}a^{8}+\frac{3}{16}a^{7}-\frac{1}{2}a^{6}+\frac{1}{16}a^{5}-\frac{1}{2}a^{4}-\frac{7}{16}a^{3}-\frac{1}{2}a^{2}-\frac{3}{16}a$, $\frac{1}{85\!\cdots\!28}a^{34}-\frac{1}{32}a^{33}+\frac{10\!\cdots\!67}{85\!\cdots\!28}a^{32}-\frac{16\!\cdots\!41}{42\!\cdots\!64}a^{30}+\frac{1}{16}a^{29}+\frac{79\!\cdots\!99}{85\!\cdots\!28}a^{28}-\frac{1}{32}a^{27}+\frac{54\!\cdots\!13}{21\!\cdots\!32}a^{26}-\frac{1}{32}a^{25}-\frac{12\!\cdots\!87}{85\!\cdots\!28}a^{24}+\frac{3}{16}a^{23}-\frac{75\!\cdots\!83}{85\!\cdots\!28}a^{22}+\frac{1}{32}a^{21}-\frac{11\!\cdots\!93}{10\!\cdots\!16}a^{20}-\frac{3}{32}a^{19}-\frac{81\!\cdots\!43}{85\!\cdots\!28}a^{18}+\frac{1}{8}a^{17}+\frac{25\!\cdots\!01}{42\!\cdots\!64}a^{16}-\frac{3}{16}a^{15}-\frac{12\!\cdots\!35}{85\!\cdots\!28}a^{14}+\frac{13}{32}a^{13}-\frac{31\!\cdots\!81}{85\!\cdots\!28}a^{12}-\frac{1}{16}a^{11}-\frac{36\!\cdots\!07}{85\!\cdots\!28}a^{10}-\frac{7}{32}a^{9}-\frac{24\!\cdots\!69}{53\!\cdots\!58}a^{8}-\frac{3}{32}a^{7}+\frac{75\!\cdots\!09}{42\!\cdots\!64}a^{6}+\frac{7}{32}a^{5}-\frac{45\!\cdots\!25}{21\!\cdots\!32}a^{4}+\frac{15}{32}a^{3}-\frac{11\!\cdots\!67}{26\!\cdots\!29}a^{2}-\frac{5}{32}a+\frac{34\!\cdots\!87}{85\!\cdots\!28}$, $\frac{1}{45\!\cdots\!84}a^{35}+\frac{41\!\cdots\!83}{22\!\cdots\!92}a^{33}-\frac{1}{32}a^{32}-\frac{93\!\cdots\!71}{42\!\cdots\!64}a^{31}+\frac{15\!\cdots\!65}{45\!\cdots\!84}a^{29}-\frac{1}{16}a^{28}+\frac{19\!\cdots\!11}{45\!\cdots\!84}a^{27}+\frac{3}{32}a^{26}-\frac{12\!\cdots\!19}{56\!\cdots\!48}a^{25}+\frac{7}{32}a^{24}+\frac{61\!\cdots\!03}{45\!\cdots\!84}a^{23}+\frac{3}{16}a^{22}-\frac{25\!\cdots\!83}{45\!\cdots\!84}a^{21}+\frac{5}{32}a^{20}+\frac{43\!\cdots\!49}{22\!\cdots\!92}a^{19}+\frac{1}{32}a^{18}+\frac{41\!\cdots\!25}{22\!\cdots\!92}a^{17}-\frac{14\!\cdots\!37}{85\!\cdots\!28}a^{15}-\frac{1}{16}a^{14}+\frac{11\!\cdots\!57}{56\!\cdots\!48}a^{13}+\frac{13}{32}a^{12}-\frac{29\!\cdots\!49}{45\!\cdots\!84}a^{11}+\frac{1}{16}a^{10}+\frac{20\!\cdots\!45}{45\!\cdots\!84}a^{9}-\frac{7}{32}a^{8}+\frac{21\!\cdots\!51}{45\!\cdots\!84}a^{7}-\frac{15}{32}a^{6}-\frac{12\!\cdots\!17}{45\!\cdots\!84}a^{5}-\frac{9}{32}a^{4}-\frac{12\!\cdots\!81}{45\!\cdots\!84}a^{3}+\frac{15}{32}a^{2}-\frac{37\!\cdots\!05}{22\!\cdots\!92}a+\frac{7}{32}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{84}$, which has order $84$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{488810014649649221211445791818995972355}{102748339513005352005796595710371279527648} a^{35} - \frac{541269850981583271891907809761}{267095812687016334483823738252384} a^{34} - \frac{33590010885043488731974318585100199508813}{102748339513005352005796595710371279527648} a^{33} - \frac{1160058273097107684650909365197}{8346744146469260452619491820387} a^{32} - \frac{9442680795681722571321746688598796281891}{969323957669861811375439582173313957808} a^{31} - \frac{551658986045038141312821841255069}{133547906343508167241911869126192} a^{30} - \frac{17101220255802496863002009395748322890939593}{102748339513005352005796595710371279527648} a^{29} - \frac{18786589381537323210092013632810925}{267095812687016334483823738252384} a^{28} - \frac{46773973420655890020024835224618059417208297}{25687084878251338001449148927592819881912} a^{27} - \frac{204610389638346440524167111395885361}{267095812687016334483823738252384} a^{26} - \frac{1388793761060102454442536023706208930927770403}{102748339513005352005796595710371279527648} a^{25} - \frac{754878245585567247869678601232168029}{133547906343508167241911869126192} a^{24} - \frac{7233762099371707829463785759591771010558837755}{102748339513005352005796595710371279527648} a^{23} - \frac{7801603961986308268343020986945417571}{267095812687016334483823738252384} a^{22} - \frac{6741085304804217665161871970466755688623707281}{25687084878251338001449148927592819881912} a^{21} - \frac{28773641805925640318948978080227643535}{267095812687016334483823738252384} a^{20} - \frac{72667868123534718672788823699693280201980972843}{102748339513005352005796595710371279527648} a^{19} - \frac{4777506526734524941280506727778044091}{16693488292938520905238983640774} a^{18} - \frac{70994953384033067859058602780712699167269545775}{51374169756502676002898297855185639763824} a^{17} - \frac{73235414138725824515520043173846926937}{133547906343508167241911869126192} a^{16} - \frac{3781462614489748827385817914491532817232557415}{1938647915339723622750879164346627915616} a^{15} - \frac{201251997657315596019379956443453173499}{267095812687016334483823738252384} a^{14} - \frac{202225998610440725347888297183965424210606920585}{102748339513005352005796595710371279527648} a^{13} - \frac{97797668810954750290479685581862090267}{133547906343508167241911869126192} a^{12} - \frac{143165709354929188406870675667103746267844504347}{102748339513005352005796595710371279527648} a^{11} - \frac{131344622116881279207346603546674718799}{267095812687016334483823738252384} a^{10} - \frac{4312210874561857040911983703355549142492590485}{6421771219562834500362287231898204970478} a^{9} - \frac{58699858243064367712971976956994522247}{267095812687016334483823738252384} a^{8} - \frac{10782875433514554510460787598553538407869033671}{51374169756502676002898297855185639763824} a^{7} - \frac{16450423013460082264620058167405995521}{267095812687016334483823738252384} a^{6} - \frac{503604373474547606361303235894625895467557815}{12843542439125669000724574463796409940956} a^{5} - \frac{2620862171310044611344971874692913361}{267095812687016334483823738252384} a^{4} - \frac{24014981675572762531014937852323903371395629}{6421771219562834500362287231898204970478} a^{3} - \frac{200639107912295547252711725974539921}{267095812687016334483823738252384} a^{2} - \frac{12484309753385793826268827868556875869396677}{102748339513005352005796595710371279527648} a - \frac{704950232766626274006784134409417}{33386976585877041810477967281548} \)  (order $18$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{42\!\cdots\!19}{13\!\cdots\!92}a^{34}+\frac{18\!\cdots\!81}{83\!\cdots\!87}a^{32}+\frac{43\!\cdots\!71}{66\!\cdots\!96}a^{30}+\frac{14\!\cdots\!19}{13\!\cdots\!92}a^{28}+\frac{16\!\cdots\!35}{13\!\cdots\!92}a^{26}+\frac{58\!\cdots\!19}{66\!\cdots\!96}a^{24}+\frac{60\!\cdots\!57}{13\!\cdots\!92}a^{22}+\frac{21\!\cdots\!29}{13\!\cdots\!92}a^{20}+\frac{14\!\cdots\!89}{33\!\cdots\!48}a^{18}+\frac{53\!\cdots\!17}{66\!\cdots\!96}a^{16}+\frac{14\!\cdots\!21}{13\!\cdots\!92}a^{14}+\frac{65\!\cdots\!73}{66\!\cdots\!96}a^{12}+\frac{81\!\cdots\!97}{13\!\cdots\!92}a^{10}+\frac{31\!\cdots\!13}{13\!\cdots\!92}a^{8}+\frac{68\!\cdots\!47}{13\!\cdots\!92}a^{6}+\frac{58\!\cdots\!87}{13\!\cdots\!92}a^{4}-\frac{16\!\cdots\!13}{13\!\cdots\!92}a^{2}-\frac{44\!\cdots\!53}{33\!\cdots\!48}$, $\frac{14\!\cdots\!59}{51\!\cdots\!24}a^{35}-\frac{55\!\cdots\!71}{13\!\cdots\!92}a^{34}+\frac{24\!\cdots\!51}{12\!\cdots\!56}a^{33}-\frac{48\!\cdots\!13}{16\!\cdots\!74}a^{32}+\frac{13\!\cdots\!91}{24\!\cdots\!52}a^{31}-\frac{57\!\cdots\!49}{66\!\cdots\!96}a^{30}+\frac{49\!\cdots\!85}{51\!\cdots\!24}a^{29}-\frac{19\!\cdots\!53}{13\!\cdots\!92}a^{28}+\frac{53\!\cdots\!27}{51\!\cdots\!24}a^{27}-\frac{22\!\cdots\!13}{13\!\cdots\!92}a^{26}+\frac{19\!\cdots\!53}{25\!\cdots\!12}a^{25}-\frac{83\!\cdots\!05}{66\!\cdots\!96}a^{24}+\frac{20\!\cdots\!67}{51\!\cdots\!24}a^{23}-\frac{88\!\cdots\!57}{13\!\cdots\!92}a^{22}+\frac{73\!\cdots\!31}{51\!\cdots\!24}a^{21}-\frac{34\!\cdots\!03}{13\!\cdots\!92}a^{20}+\frac{96\!\cdots\!97}{25\!\cdots\!12}a^{19}-\frac{47\!\cdots\!75}{66\!\cdots\!96}a^{18}+\frac{45\!\cdots\!77}{64\!\cdots\!78}a^{17}-\frac{24\!\cdots\!65}{16\!\cdots\!74}a^{16}+\frac{91\!\cdots\!73}{96\!\cdots\!08}a^{15}-\frac{29\!\cdots\!39}{13\!\cdots\!92}a^{14}+\frac{57\!\cdots\!07}{64\!\cdots\!78}a^{13}-\frac{16\!\cdots\!47}{66\!\cdots\!96}a^{12}+\frac{30\!\cdots\!05}{51\!\cdots\!24}a^{11}-\frac{25\!\cdots\!51}{13\!\cdots\!92}a^{10}+\frac{13\!\cdots\!07}{51\!\cdots\!24}a^{9}-\frac{13\!\cdots\!17}{13\!\cdots\!92}a^{8}+\frac{36\!\cdots\!71}{51\!\cdots\!24}a^{7}-\frac{48\!\cdots\!37}{13\!\cdots\!92}a^{6}+\frac{58\!\cdots\!51}{51\!\cdots\!24}a^{5}-\frac{10\!\cdots\!87}{13\!\cdots\!92}a^{4}+\frac{45\!\cdots\!29}{51\!\cdots\!24}a^{3}-\frac{10\!\cdots\!67}{13\!\cdots\!92}a^{2}+\frac{25\!\cdots\!19}{12\!\cdots\!56}a-\frac{19\!\cdots\!83}{66\!\cdots\!96}$, $\frac{18\!\cdots\!57}{45\!\cdots\!84}a^{35}+\frac{17\!\cdots\!13}{12\!\cdots\!44}a^{34}+\frac{62\!\cdots\!49}{22\!\cdots\!92}a^{33}+\frac{23\!\cdots\!95}{25\!\cdots\!88}a^{32}+\frac{35\!\cdots\!79}{42\!\cdots\!64}a^{31}+\frac{17\!\cdots\!93}{63\!\cdots\!72}a^{30}+\frac{63\!\cdots\!49}{45\!\cdots\!84}a^{29}+\frac{28\!\cdots\!45}{63\!\cdots\!72}a^{28}+\frac{69\!\cdots\!19}{45\!\cdots\!84}a^{27}+\frac{12\!\cdots\!05}{25\!\cdots\!88}a^{26}+\frac{12\!\cdots\!53}{11\!\cdots\!96}a^{25}+\frac{87\!\cdots\!95}{25\!\cdots\!88}a^{24}+\frac{27\!\cdots\!03}{45\!\cdots\!84}a^{23}+\frac{10\!\cdots\!75}{63\!\cdots\!72}a^{22}+\frac{10\!\cdots\!61}{45\!\cdots\!84}a^{21}+\frac{14\!\cdots\!15}{25\!\cdots\!88}a^{20}+\frac{13\!\cdots\!09}{22\!\cdots\!92}a^{19}+\frac{35\!\cdots\!65}{25\!\cdots\!88}a^{18}+\frac{26\!\cdots\!47}{22\!\cdots\!92}a^{17}+\frac{18\!\cdots\!83}{79\!\cdots\!59}a^{16}+\frac{14\!\cdots\!19}{85\!\cdots\!28}a^{15}+\frac{85\!\cdots\!69}{31\!\cdots\!36}a^{14}+\frac{48\!\cdots\!55}{28\!\cdots\!74}a^{13}+\frac{47\!\cdots\!33}{25\!\cdots\!88}a^{12}+\frac{55\!\cdots\!63}{45\!\cdots\!84}a^{11}+\frac{38\!\cdots\!45}{63\!\cdots\!72}a^{10}+\frac{27\!\cdots\!33}{45\!\cdots\!84}a^{9}-\frac{33\!\cdots\!29}{25\!\cdots\!88}a^{8}+\frac{87\!\cdots\!23}{45\!\cdots\!84}a^{7}-\frac{51\!\cdots\!09}{25\!\cdots\!88}a^{6}+\frac{16\!\cdots\!35}{45\!\cdots\!84}a^{5}-\frac{18\!\cdots\!79}{25\!\cdots\!88}a^{4}+\frac{16\!\cdots\!47}{45\!\cdots\!84}a^{3}-\frac{26\!\cdots\!79}{25\!\cdots\!88}a^{2}+\frac{27\!\cdots\!01}{22\!\cdots\!92}a-\frac{10\!\cdots\!61}{25\!\cdots\!88}$, $\frac{12\!\cdots\!44}{14\!\cdots\!37}a^{35}+\frac{66\!\cdots\!05}{79\!\cdots\!59}a^{34}+\frac{66\!\cdots\!47}{11\!\cdots\!96}a^{33}+\frac{18\!\cdots\!31}{31\!\cdots\!36}a^{32}+\frac{37\!\cdots\!15}{21\!\cdots\!32}a^{31}+\frac{13\!\cdots\!32}{79\!\cdots\!59}a^{30}+\frac{33\!\cdots\!83}{11\!\cdots\!96}a^{29}+\frac{18\!\cdots\!95}{63\!\cdots\!72}a^{28}+\frac{36\!\cdots\!69}{11\!\cdots\!96}a^{27}+\frac{20\!\cdots\!31}{63\!\cdots\!72}a^{26}+\frac{26\!\cdots\!15}{11\!\cdots\!96}a^{25}+\frac{38\!\cdots\!39}{15\!\cdots\!18}a^{24}+\frac{13\!\cdots\!91}{11\!\cdots\!96}a^{23}+\frac{19\!\cdots\!51}{15\!\cdots\!18}a^{22}+\frac{24\!\cdots\!61}{56\!\cdots\!48}a^{21}+\frac{29\!\cdots\!83}{63\!\cdots\!72}a^{20}+\frac{32\!\cdots\!89}{28\!\cdots\!74}a^{19}+\frac{79\!\cdots\!23}{63\!\cdots\!72}a^{18}+\frac{23\!\cdots\!09}{11\!\cdots\!96}a^{17}+\frac{15\!\cdots\!83}{63\!\cdots\!72}a^{16}+\frac{29\!\cdots\!19}{10\!\cdots\!16}a^{15}+\frac{21\!\cdots\!33}{63\!\cdots\!72}a^{14}+\frac{14\!\cdots\!89}{56\!\cdots\!48}a^{13}+\frac{10\!\cdots\!75}{31\!\cdots\!36}a^{12}+\frac{84\!\cdots\!01}{56\!\cdots\!48}a^{11}+\frac{14\!\cdots\!41}{63\!\cdots\!72}a^{10}+\frac{30\!\cdots\!67}{56\!\cdots\!48}a^{9}+\frac{32\!\cdots\!77}{31\!\cdots\!36}a^{8}+\frac{99\!\cdots\!77}{11\!\cdots\!96}a^{7}+\frac{19\!\cdots\!39}{63\!\cdots\!72}a^{6}-\frac{30\!\cdots\!49}{11\!\cdots\!96}a^{5}+\frac{16\!\cdots\!33}{31\!\cdots\!36}a^{4}-\frac{12\!\cdots\!77}{56\!\cdots\!48}a^{3}+\frac{14\!\cdots\!83}{31\!\cdots\!36}a^{2}-\frac{72\!\cdots\!17}{11\!\cdots\!96}a+\frac{73\!\cdots\!89}{63\!\cdots\!72}$, $\frac{10\!\cdots\!87}{45\!\cdots\!84}a^{35}-\frac{59\!\cdots\!65}{25\!\cdots\!88}a^{34}+\frac{74\!\cdots\!47}{45\!\cdots\!84}a^{33}-\frac{10\!\cdots\!09}{63\!\cdots\!72}a^{32}+\frac{20\!\cdots\!95}{42\!\cdots\!64}a^{31}-\frac{60\!\cdots\!93}{12\!\cdots\!44}a^{30}+\frac{37\!\cdots\!01}{45\!\cdots\!84}a^{29}-\frac{20\!\cdots\!41}{25\!\cdots\!88}a^{28}+\frac{20\!\cdots\!39}{22\!\cdots\!92}a^{27}-\frac{21\!\cdots\!53}{25\!\cdots\!88}a^{26}+\frac{30\!\cdots\!69}{45\!\cdots\!84}a^{25}-\frac{80\!\cdots\!39}{12\!\cdots\!44}a^{24}+\frac{15\!\cdots\!15}{45\!\cdots\!84}a^{23}-\frac{81\!\cdots\!63}{25\!\cdots\!88}a^{22}+\frac{29\!\cdots\!77}{22\!\cdots\!92}a^{21}-\frac{29\!\cdots\!11}{25\!\cdots\!88}a^{20}+\frac{15\!\cdots\!81}{45\!\cdots\!84}a^{19}-\frac{19\!\cdots\!51}{63\!\cdots\!72}a^{18}+\frac{15\!\cdots\!19}{22\!\cdots\!92}a^{17}-\frac{72\!\cdots\!53}{12\!\cdots\!44}a^{16}+\frac{83\!\cdots\!99}{85\!\cdots\!28}a^{15}-\frac{19\!\cdots\!31}{25\!\cdots\!88}a^{14}+\frac{45\!\cdots\!75}{45\!\cdots\!84}a^{13}-\frac{89\!\cdots\!97}{12\!\cdots\!44}a^{12}+\frac{32\!\cdots\!67}{45\!\cdots\!84}a^{11}-\frac{11\!\cdots\!99}{25\!\cdots\!88}a^{10}+\frac{82\!\cdots\!91}{22\!\cdots\!92}a^{9}-\frac{49\!\cdots\!27}{25\!\cdots\!88}a^{8}+\frac{13\!\cdots\!83}{11\!\cdots\!96}a^{7}-\frac{13\!\cdots\!41}{25\!\cdots\!88}a^{6}+\frac{54\!\cdots\!29}{22\!\cdots\!92}a^{5}-\frac{20\!\cdots\!85}{25\!\cdots\!88}a^{4}+\frac{55\!\cdots\!25}{22\!\cdots\!92}a^{3}-\frac{14\!\cdots\!89}{25\!\cdots\!88}a^{2}+\frac{39\!\cdots\!23}{45\!\cdots\!84}a-\frac{10\!\cdots\!63}{63\!\cdots\!72}$, $\frac{25\!\cdots\!47}{45\!\cdots\!84}a^{35}+\frac{31\!\cdots\!29}{97\!\cdots\!08}a^{34}+\frac{22\!\cdots\!75}{56\!\cdots\!48}a^{33}+\frac{85\!\cdots\!97}{39\!\cdots\!32}a^{32}+\frac{50\!\cdots\!73}{42\!\cdots\!64}a^{31}+\frac{15\!\cdots\!03}{24\!\cdots\!02}a^{30}+\frac{91\!\cdots\!27}{45\!\cdots\!84}a^{29}+\frac{21\!\cdots\!25}{19\!\cdots\!16}a^{28}+\frac{10\!\cdots\!07}{45\!\cdots\!84}a^{27}+\frac{46\!\cdots\!85}{39\!\cdots\!32}a^{26}+\frac{37\!\cdots\!19}{22\!\cdots\!92}a^{25}+\frac{34\!\cdots\!17}{39\!\cdots\!32}a^{24}+\frac{39\!\cdots\!01}{45\!\cdots\!84}a^{23}+\frac{89\!\cdots\!59}{19\!\cdots\!16}a^{22}+\frac{15\!\cdots\!61}{45\!\cdots\!84}a^{21}+\frac{65\!\cdots\!03}{39\!\cdots\!32}a^{20}+\frac{10\!\cdots\!25}{11\!\cdots\!96}a^{19}+\frac{17\!\cdots\!87}{39\!\cdots\!32}a^{18}+\frac{41\!\cdots\!93}{22\!\cdots\!92}a^{17}+\frac{84\!\cdots\!85}{97\!\cdots\!08}a^{16}+\frac{22\!\cdots\!05}{85\!\cdots\!28}a^{15}+\frac{23\!\cdots\!97}{19\!\cdots\!16}a^{14}+\frac{62\!\cdots\!75}{22\!\cdots\!92}a^{13}+\frac{45\!\cdots\!27}{39\!\cdots\!32}a^{12}+\frac{93\!\cdots\!77}{45\!\cdots\!84}a^{11}+\frac{15\!\cdots\!71}{19\!\cdots\!16}a^{10}+\frac{47\!\cdots\!65}{45\!\cdots\!84}a^{9}+\frac{14\!\cdots\!19}{39\!\cdots\!32}a^{8}+\frac{16\!\cdots\!39}{45\!\cdots\!84}a^{7}+\frac{42\!\cdots\!55}{39\!\cdots\!32}a^{6}+\frac{32\!\cdots\!11}{45\!\cdots\!84}a^{5}+\frac{72\!\cdots\!81}{39\!\cdots\!32}a^{4}+\frac{33\!\cdots\!47}{45\!\cdots\!84}a^{3}+\frac{62\!\cdots\!81}{39\!\cdots\!32}a^{2}+\frac{69\!\cdots\!71}{28\!\cdots\!74}a+\frac{18\!\cdots\!65}{39\!\cdots\!32}$, $\frac{15\!\cdots\!85}{45\!\cdots\!84}a^{35}+\frac{60\!\cdots\!13}{19\!\cdots\!16}a^{34}+\frac{53\!\cdots\!31}{22\!\cdots\!92}a^{33}+\frac{83\!\cdots\!03}{39\!\cdots\!32}a^{32}+\frac{30\!\cdots\!91}{42\!\cdots\!64}a^{31}+\frac{61\!\cdots\!15}{97\!\cdots\!08}a^{30}+\frac{58\!\cdots\!13}{45\!\cdots\!84}a^{29}+\frac{10\!\cdots\!95}{97\!\cdots\!08}a^{28}+\frac{66\!\cdots\!35}{45\!\cdots\!84}a^{27}+\frac{45\!\cdots\!97}{39\!\cdots\!32}a^{26}+\frac{16\!\cdots\!22}{14\!\cdots\!37}a^{25}+\frac{33\!\cdots\!03}{39\!\cdots\!32}a^{24}+\frac{28\!\cdots\!39}{45\!\cdots\!84}a^{23}+\frac{42\!\cdots\!99}{97\!\cdots\!08}a^{22}+\frac{11\!\cdots\!73}{45\!\cdots\!84}a^{21}+\frac{61\!\cdots\!71}{39\!\cdots\!32}a^{20}+\frac{15\!\cdots\!71}{22\!\cdots\!92}a^{19}+\frac{16\!\cdots\!37}{39\!\cdots\!32}a^{18}+\frac{31\!\cdots\!87}{22\!\cdots\!92}a^{17}+\frac{95\!\cdots\!17}{12\!\cdots\!51}a^{16}+\frac{17\!\cdots\!67}{85\!\cdots\!28}a^{15}+\frac{51\!\cdots\!93}{48\!\cdots\!04}a^{14}+\frac{21\!\cdots\!83}{11\!\cdots\!96}a^{13}+\frac{38\!\cdots\!21}{39\!\cdots\!32}a^{12}+\frac{51\!\cdots\!91}{45\!\cdots\!84}a^{11}+\frac{62\!\cdots\!05}{97\!\cdots\!08}a^{10}+\frac{15\!\cdots\!97}{45\!\cdots\!84}a^{9}+\frac{10\!\cdots\!91}{39\!\cdots\!32}a^{8}+\frac{34\!\cdots\!11}{45\!\cdots\!84}a^{7}+\frac{26\!\cdots\!87}{39\!\cdots\!32}a^{6}-\frac{12\!\cdots\!01}{45\!\cdots\!84}a^{5}+\frac{36\!\cdots\!93}{39\!\cdots\!32}a^{4}-\frac{28\!\cdots\!77}{45\!\cdots\!84}a^{3}+\frac{17\!\cdots\!05}{39\!\cdots\!32}a^{2}-\frac{64\!\cdots\!45}{22\!\cdots\!92}a+\frac{20\!\cdots\!71}{39\!\cdots\!32}$, $\frac{29\!\cdots\!49}{45\!\cdots\!84}a^{35}+\frac{41\!\cdots\!59}{39\!\cdots\!32}a^{34}+\frac{19\!\cdots\!29}{45\!\cdots\!84}a^{33}+\frac{35\!\cdots\!91}{12\!\cdots\!51}a^{32}+\frac{55\!\cdots\!29}{42\!\cdots\!64}a^{31}-\frac{15\!\cdots\!07}{19\!\cdots\!16}a^{30}+\frac{10\!\cdots\!07}{45\!\cdots\!84}a^{29}-\frac{19\!\cdots\!45}{39\!\cdots\!32}a^{28}+\frac{54\!\cdots\!87}{22\!\cdots\!92}a^{27}-\frac{41\!\cdots\!89}{39\!\cdots\!32}a^{26}+\frac{80\!\cdots\!91}{45\!\cdots\!84}a^{25}-\frac{24\!\cdots\!53}{19\!\cdots\!16}a^{24}+\frac{41\!\cdots\!17}{45\!\cdots\!84}a^{23}-\frac{37\!\cdots\!15}{39\!\cdots\!32}a^{22}+\frac{76\!\cdots\!61}{22\!\cdots\!92}a^{21}-\frac{19\!\cdots\!59}{39\!\cdots\!32}a^{20}+\frac{40\!\cdots\!87}{45\!\cdots\!84}a^{19}-\frac{21\!\cdots\!09}{12\!\cdots\!51}a^{18}+\frac{39\!\cdots\!39}{22\!\cdots\!92}a^{17}-\frac{87\!\cdots\!33}{19\!\cdots\!16}a^{16}+\frac{20\!\cdots\!45}{85\!\cdots\!28}a^{15}-\frac{30\!\cdots\!75}{39\!\cdots\!32}a^{14}+\frac{10\!\cdots\!45}{45\!\cdots\!84}a^{13}-\frac{18\!\cdots\!25}{19\!\cdots\!16}a^{12}+\frac{69\!\cdots\!45}{45\!\cdots\!84}a^{11}-\frac{30\!\cdots\!15}{39\!\cdots\!32}a^{10}+\frac{15\!\cdots\!49}{22\!\cdots\!92}a^{9}-\frac{16\!\cdots\!43}{39\!\cdots\!32}a^{8}+\frac{10\!\cdots\!95}{56\!\cdots\!48}a^{7}-\frac{49\!\cdots\!29}{39\!\cdots\!32}a^{6}+\frac{65\!\cdots\!43}{22\!\cdots\!92}a^{5}-\frac{76\!\cdots\!97}{39\!\cdots\!32}a^{4}+\frac{45\!\cdots\!87}{22\!\cdots\!92}a^{3}-\frac{41\!\cdots\!41}{39\!\cdots\!32}a^{2}+\frac{22\!\cdots\!53}{45\!\cdots\!84}a-\frac{16\!\cdots\!99}{97\!\cdots\!08}$, $\frac{15\!\cdots\!75}{45\!\cdots\!84}a^{35}-\frac{12\!\cdots\!31}{48\!\cdots\!04}a^{34}+\frac{26\!\cdots\!25}{11\!\cdots\!96}a^{33}-\frac{66\!\cdots\!71}{39\!\cdots\!32}a^{32}+\frac{30\!\cdots\!63}{42\!\cdots\!64}a^{31}-\frac{24\!\cdots\!25}{48\!\cdots\!04}a^{30}+\frac{55\!\cdots\!07}{45\!\cdots\!84}a^{29}-\frac{16\!\cdots\!91}{19\!\cdots\!16}a^{28}+\frac{61\!\cdots\!35}{45\!\cdots\!84}a^{27}-\frac{35\!\cdots\!59}{39\!\cdots\!32}a^{26}+\frac{23\!\cdots\!41}{22\!\cdots\!92}a^{25}-\frac{25\!\cdots\!95}{39\!\cdots\!32}a^{24}+\frac{24\!\cdots\!65}{45\!\cdots\!84}a^{23}-\frac{65\!\cdots\!19}{19\!\cdots\!16}a^{22}+\frac{95\!\cdots\!93}{45\!\cdots\!84}a^{21}-\frac{47\!\cdots\!57}{39\!\cdots\!32}a^{20}+\frac{66\!\cdots\!17}{11\!\cdots\!96}a^{19}-\frac{12\!\cdots\!21}{39\!\cdots\!32}a^{18}+\frac{26\!\cdots\!27}{22\!\cdots\!92}a^{17}-\frac{70\!\cdots\!34}{12\!\cdots\!51}a^{16}+\frac{15\!\cdots\!57}{85\!\cdots\!28}a^{15}-\frac{14\!\cdots\!99}{19\!\cdots\!16}a^{14}+\frac{42\!\cdots\!43}{22\!\cdots\!92}a^{13}-\frac{27\!\cdots\!97}{39\!\cdots\!32}a^{12}+\frac{64\!\cdots\!85}{45\!\cdots\!84}a^{11}-\frac{86\!\cdots\!49}{19\!\cdots\!16}a^{10}+\frac{33\!\cdots\!49}{45\!\cdots\!84}a^{9}-\frac{70\!\cdots\!09}{39\!\cdots\!32}a^{8}+\frac{11\!\cdots\!15}{45\!\cdots\!84}a^{7}-\frac{17\!\cdots\!61}{39\!\cdots\!32}a^{6}+\frac{23\!\cdots\!95}{45\!\cdots\!84}a^{5}-\frac{23\!\cdots\!07}{39\!\cdots\!32}a^{4}+\frac{24\!\cdots\!91}{45\!\cdots\!84}a^{3}-\frac{12\!\cdots\!11}{39\!\cdots\!32}a^{2}+\frac{20\!\cdots\!77}{11\!\cdots\!96}a-\frac{23\!\cdots\!59}{39\!\cdots\!32}$, $\frac{70\!\cdots\!25}{22\!\cdots\!92}a^{35}-\frac{38\!\cdots\!11}{19\!\cdots\!16}a^{34}+\frac{48\!\cdots\!71}{22\!\cdots\!92}a^{33}-\frac{26\!\cdots\!05}{19\!\cdots\!16}a^{32}+\frac{13\!\cdots\!63}{21\!\cdots\!32}a^{31}-\frac{19\!\cdots\!09}{48\!\cdots\!04}a^{30}+\frac{25\!\cdots\!01}{22\!\cdots\!92}a^{29}-\frac{13\!\cdots\!05}{19\!\cdots\!16}a^{28}+\frac{14\!\cdots\!33}{11\!\cdots\!96}a^{27}-\frac{69\!\cdots\!19}{97\!\cdots\!08}a^{26}+\frac{21\!\cdots\!57}{22\!\cdots\!92}a^{25}-\frac{10\!\cdots\!07}{19\!\cdots\!16}a^{24}+\frac{11\!\cdots\!09}{22\!\cdots\!92}a^{23}-\frac{50\!\cdots\!73}{19\!\cdots\!16}a^{22}+\frac{22\!\cdots\!43}{11\!\cdots\!96}a^{21}-\frac{45\!\cdots\!33}{48\!\cdots\!04}a^{20}+\frac{12\!\cdots\!63}{22\!\cdots\!92}a^{19}-\frac{45\!\cdots\!75}{19\!\cdots\!16}a^{18}+\frac{33\!\cdots\!99}{28\!\cdots\!74}a^{17}-\frac{40\!\cdots\!35}{97\!\cdots\!08}a^{16}+\frac{75\!\cdots\!75}{42\!\cdots\!64}a^{15}-\frac{10\!\cdots\!01}{19\!\cdots\!16}a^{14}+\frac{43\!\cdots\!75}{22\!\cdots\!92}a^{13}-\frac{88\!\cdots\!63}{19\!\cdots\!16}a^{12}+\frac{33\!\cdots\!27}{22\!\cdots\!92}a^{11}-\frac{48\!\cdots\!45}{19\!\cdots\!16}a^{10}+\frac{45\!\cdots\!19}{56\!\cdots\!48}a^{9}-\frac{78\!\cdots\!15}{97\!\cdots\!08}a^{8}+\frac{80\!\cdots\!31}{28\!\cdots\!74}a^{7}-\frac{48\!\cdots\!17}{48\!\cdots\!04}a^{6}+\frac{17\!\cdots\!35}{28\!\cdots\!74}a^{5}+\frac{73\!\cdots\!79}{48\!\cdots\!04}a^{4}+\frac{38\!\cdots\!27}{56\!\cdots\!48}a^{3}+\frac{49\!\cdots\!71}{97\!\cdots\!08}a^{2}+\frac{57\!\cdots\!73}{22\!\cdots\!92}a+\frac{48\!\cdots\!97}{19\!\cdots\!16}$, $\frac{10\!\cdots\!03}{45\!\cdots\!84}a^{35}-\frac{11\!\cdots\!67}{42\!\cdots\!64}a^{34}+\frac{35\!\cdots\!63}{22\!\cdots\!92}a^{33}-\frac{15\!\cdots\!53}{85\!\cdots\!28}a^{32}+\frac{20\!\cdots\!25}{42\!\cdots\!64}a^{31}-\frac{11\!\cdots\!89}{21\!\cdots\!32}a^{30}+\frac{36\!\cdots\!95}{45\!\cdots\!84}a^{29}-\frac{19\!\cdots\!99}{21\!\cdots\!32}a^{28}+\frac{41\!\cdots\!01}{45\!\cdots\!84}a^{27}-\frac{85\!\cdots\!55}{85\!\cdots\!28}a^{26}+\frac{78\!\cdots\!23}{11\!\cdots\!96}a^{25}-\frac{62\!\cdots\!49}{85\!\cdots\!28}a^{24}+\frac{16\!\cdots\!17}{45\!\cdots\!84}a^{23}-\frac{80\!\cdots\!53}{21\!\cdots\!32}a^{22}+\frac{65\!\cdots\!55}{45\!\cdots\!84}a^{21}-\frac{11\!\cdots\!73}{85\!\cdots\!28}a^{20}+\frac{92\!\cdots\!23}{22\!\cdots\!92}a^{19}-\frac{31\!\cdots\!47}{85\!\cdots\!28}a^{18}+\frac{19\!\cdots\!09}{22\!\cdots\!92}a^{17}-\frac{75\!\cdots\!23}{10\!\cdots\!16}a^{16}+\frac{10\!\cdots\!33}{85\!\cdots\!28}a^{15}-\frac{51\!\cdots\!65}{53\!\cdots\!58}a^{14}+\frac{39\!\cdots\!71}{28\!\cdots\!74}a^{13}-\frac{80\!\cdots\!75}{85\!\cdots\!28}a^{12}+\frac{48\!\cdots\!77}{45\!\cdots\!84}a^{11}-\frac{13\!\cdots\!05}{21\!\cdots\!32}a^{10}+\frac{26\!\cdots\!07}{45\!\cdots\!84}a^{9}-\frac{24\!\cdots\!25}{85\!\cdots\!28}a^{8}+\frac{91\!\cdots\!13}{45\!\cdots\!84}a^{7}-\frac{70\!\cdots\!37}{85\!\cdots\!28}a^{6}+\frac{19\!\cdots\!93}{45\!\cdots\!84}a^{5}-\frac{11\!\cdots\!07}{85\!\cdots\!28}a^{4}+\frac{21\!\cdots\!17}{45\!\cdots\!84}a^{3}-\frac{92\!\cdots\!59}{85\!\cdots\!28}a^{2}+\frac{40\!\cdots\!03}{22\!\cdots\!92}a-\frac{27\!\cdots\!25}{85\!\cdots\!28}$, $\frac{92\!\cdots\!09}{45\!\cdots\!84}a^{35}+\frac{29\!\cdots\!97}{85\!\cdots\!28}a^{34}+\frac{63\!\cdots\!25}{45\!\cdots\!84}a^{33}+\frac{63\!\cdots\!18}{26\!\cdots\!29}a^{32}+\frac{17\!\cdots\!43}{42\!\cdots\!64}a^{31}+\frac{29\!\cdots\!01}{42\!\cdots\!64}a^{30}+\frac{32\!\cdots\!95}{45\!\cdots\!84}a^{29}+\frac{10\!\cdots\!93}{85\!\cdots\!28}a^{28}+\frac{17\!\cdots\!15}{22\!\cdots\!92}a^{27}+\frac{10\!\cdots\!13}{85\!\cdots\!28}a^{26}+\frac{26\!\cdots\!03}{45\!\cdots\!84}a^{25}+\frac{39\!\cdots\!33}{42\!\cdots\!64}a^{24}+\frac{14\!\cdots\!13}{45\!\cdots\!84}a^{23}+\frac{39\!\cdots\!23}{85\!\cdots\!28}a^{22}+\frac{26\!\cdots\!51}{22\!\cdots\!92}a^{21}+\frac{14\!\cdots\!35}{85\!\cdots\!28}a^{20}+\frac{14\!\cdots\!91}{45\!\cdots\!84}a^{19}+\frac{91\!\cdots\!65}{21\!\cdots\!32}a^{18}+\frac{14\!\cdots\!07}{22\!\cdots\!92}a^{17}+\frac{33\!\cdots\!67}{42\!\cdots\!64}a^{16}+\frac{81\!\cdots\!89}{85\!\cdots\!28}a^{15}+\frac{87\!\cdots\!75}{85\!\cdots\!28}a^{14}+\frac{45\!\cdots\!57}{45\!\cdots\!84}a^{13}+\frac{39\!\cdots\!27}{42\!\cdots\!64}a^{12}+\frac{33\!\cdots\!85}{45\!\cdots\!84}a^{11}+\frac{49\!\cdots\!31}{85\!\cdots\!28}a^{10}+\frac{87\!\cdots\!37}{22\!\cdots\!92}a^{9}+\frac{19\!\cdots\!67}{85\!\cdots\!28}a^{8}+\frac{75\!\cdots\!27}{56\!\cdots\!48}a^{7}+\frac{47\!\cdots\!61}{85\!\cdots\!28}a^{6}+\frac{62\!\cdots\!53}{22\!\cdots\!92}a^{5}+\frac{58\!\cdots\!09}{85\!\cdots\!28}a^{4}+\frac{66\!\cdots\!99}{22\!\cdots\!92}a^{3}+\frac{27\!\cdots\!41}{85\!\cdots\!28}a^{2}+\frac{46\!\cdots\!89}{45\!\cdots\!84}a+\frac{63\!\cdots\!41}{21\!\cdots\!32}$, $\frac{37\!\cdots\!15}{45\!\cdots\!84}a^{35}-\frac{77\!\cdots\!81}{85\!\cdots\!28}a^{34}+\frac{29\!\cdots\!43}{45\!\cdots\!84}a^{33}-\frac{26\!\cdots\!07}{42\!\cdots\!64}a^{32}+\frac{96\!\cdots\!41}{42\!\cdots\!64}a^{31}-\frac{78\!\cdots\!13}{42\!\cdots\!64}a^{30}+\frac{20\!\cdots\!49}{45\!\cdots\!84}a^{29}-\frac{26\!\cdots\!41}{85\!\cdots\!28}a^{28}+\frac{13\!\cdots\!05}{22\!\cdots\!92}a^{27}-\frac{29\!\cdots\!95}{85\!\cdots\!28}a^{26}+\frac{24\!\cdots\!73}{45\!\cdots\!84}a^{25}-\frac{66\!\cdots\!40}{26\!\cdots\!29}a^{24}+\frac{15\!\cdots\!31}{45\!\cdots\!84}a^{23}-\frac{11\!\cdots\!67}{85\!\cdots\!28}a^{22}+\frac{35\!\cdots\!53}{22\!\cdots\!92}a^{21}-\frac{40\!\cdots\!89}{85\!\cdots\!28}a^{20}+\frac{23\!\cdots\!45}{45\!\cdots\!84}a^{19}-\frac{52\!\cdots\!59}{42\!\cdots\!64}a^{18}+\frac{28\!\cdots\!45}{22\!\cdots\!92}a^{17}-\frac{99\!\cdots\!71}{42\!\cdots\!64}a^{16}+\frac{19\!\cdots\!83}{85\!\cdots\!28}a^{15}-\frac{26\!\cdots\!79}{85\!\cdots\!28}a^{14}+\frac{13\!\cdots\!19}{45\!\cdots\!84}a^{13}-\frac{31\!\cdots\!61}{10\!\cdots\!16}a^{12}+\frac{11\!\cdots\!23}{45\!\cdots\!84}a^{11}-\frac{16\!\cdots\!83}{85\!\cdots\!28}a^{10}+\frac{36\!\cdots\!87}{22\!\cdots\!92}a^{9}-\frac{67\!\cdots\!45}{85\!\cdots\!28}a^{8}+\frac{36\!\cdots\!25}{56\!\cdots\!48}a^{7}-\frac{17\!\cdots\!11}{85\!\cdots\!28}a^{6}+\frac{34\!\cdots\!47}{22\!\cdots\!92}a^{5}-\frac{22\!\cdots\!95}{85\!\cdots\!28}a^{4}+\frac{41\!\cdots\!45}{22\!\cdots\!92}a^{3}-\frac{12\!\cdots\!87}{85\!\cdots\!28}a^{2}+\frac{32\!\cdots\!31}{45\!\cdots\!84}a-\frac{99\!\cdots\!89}{42\!\cdots\!64}$, $\frac{54\!\cdots\!71}{45\!\cdots\!84}a^{35}-\frac{29\!\cdots\!47}{42\!\cdots\!64}a^{34}+\frac{91\!\cdots\!23}{11\!\cdots\!96}a^{33}-\frac{39\!\cdots\!93}{85\!\cdots\!28}a^{32}+\frac{10\!\cdots\!63}{42\!\cdots\!64}a^{31}-\frac{29\!\cdots\!53}{21\!\cdots\!32}a^{30}+\frac{18\!\cdots\!87}{45\!\cdots\!84}a^{29}-\frac{62\!\cdots\!82}{26\!\cdots\!29}a^{28}+\frac{19\!\cdots\!39}{45\!\cdots\!84}a^{27}-\frac{21\!\cdots\!91}{85\!\cdots\!28}a^{26}+\frac{69\!\cdots\!65}{22\!\cdots\!92}a^{25}-\frac{15\!\cdots\!09}{85\!\cdots\!28}a^{24}+\frac{69\!\cdots\!09}{45\!\cdots\!84}a^{23}-\frac{20\!\cdots\!53}{21\!\cdots\!32}a^{22}+\frac{24\!\cdots\!13}{45\!\cdots\!84}a^{21}-\frac{29\!\cdots\!89}{85\!\cdots\!28}a^{20}+\frac{15\!\cdots\!25}{11\!\cdots\!96}a^{19}-\frac{76\!\cdots\!35}{85\!\cdots\!28}a^{18}+\frac{55\!\cdots\!59}{22\!\cdots\!92}a^{17}-\frac{36\!\cdots\!99}{21\!\cdots\!32}a^{16}+\frac{26\!\cdots\!65}{85\!\cdots\!28}a^{15}-\frac{48\!\cdots\!59}{21\!\cdots\!32}a^{14}+\frac{58\!\cdots\!19}{22\!\cdots\!92}a^{13}-\frac{18\!\cdots\!55}{85\!\cdots\!28}a^{12}+\frac{63\!\cdots\!05}{45\!\cdots\!84}a^{11}-\frac{36\!\cdots\!42}{26\!\cdots\!29}a^{10}+\frac{19\!\cdots\!49}{45\!\cdots\!84}a^{9}-\frac{50\!\cdots\!97}{85\!\cdots\!28}a^{8}+\frac{17\!\cdots\!51}{45\!\cdots\!84}a^{7}-\frac{13\!\cdots\!97}{85\!\cdots\!28}a^{6}-\frac{63\!\cdots\!89}{45\!\cdots\!84}a^{5}-\frac{20\!\cdots\!75}{85\!\cdots\!28}a^{4}-\frac{16\!\cdots\!01}{45\!\cdots\!84}a^{3}-\frac{14\!\cdots\!35}{85\!\cdots\!28}a^{2}-\frac{16\!\cdots\!47}{11\!\cdots\!96}a-\frac{35\!\cdots\!57}{85\!\cdots\!28}$, $\frac{26\!\cdots\!59}{45\!\cdots\!84}a^{35}+\frac{12\!\cdots\!46}{26\!\cdots\!29}a^{34}+\frac{87\!\cdots\!45}{22\!\cdots\!92}a^{33}+\frac{26\!\cdots\!67}{85\!\cdots\!28}a^{32}+\frac{46\!\cdots\!33}{42\!\cdots\!64}a^{31}+\frac{19\!\cdots\!01}{21\!\cdots\!32}a^{30}+\frac{76\!\cdots\!67}{45\!\cdots\!84}a^{29}+\frac{65\!\cdots\!01}{42\!\cdots\!64}a^{28}+\frac{75\!\cdots\!93}{45\!\cdots\!84}a^{27}+\frac{14\!\cdots\!75}{85\!\cdots\!28}a^{26}+\frac{59\!\cdots\!91}{56\!\cdots\!48}a^{25}+\frac{10\!\cdots\!35}{85\!\cdots\!28}a^{24}+\frac{19\!\cdots\!49}{45\!\cdots\!84}a^{23}+\frac{24\!\cdots\!77}{42\!\cdots\!64}a^{22}+\frac{48\!\cdots\!51}{45\!\cdots\!84}a^{21}+\frac{17\!\cdots\!41}{85\!\cdots\!28}a^{20}+\frac{26\!\cdots\!83}{22\!\cdots\!92}a^{19}+\frac{43\!\cdots\!41}{85\!\cdots\!28}a^{18}-\frac{36\!\cdots\!37}{22\!\cdots\!92}a^{17}+\frac{19\!\cdots\!73}{21\!\cdots\!32}a^{16}-\frac{73\!\cdots\!35}{85\!\cdots\!28}a^{15}+\frac{48\!\cdots\!07}{42\!\cdots\!64}a^{14}-\frac{17\!\cdots\!23}{11\!\cdots\!96}a^{13}+\frac{85\!\cdots\!61}{85\!\cdots\!28}a^{12}-\frac{75\!\cdots\!63}{45\!\cdots\!84}a^{11}+\frac{25\!\cdots\!61}{42\!\cdots\!64}a^{10}-\frac{49\!\cdots\!65}{45\!\cdots\!84}a^{9}+\frac{20\!\cdots\!01}{85\!\cdots\!28}a^{8}-\frac{19\!\cdots\!51}{45\!\cdots\!84}a^{7}+\frac{51\!\cdots\!77}{85\!\cdots\!28}a^{6}-\frac{46\!\cdots\!11}{45\!\cdots\!84}a^{5}+\frac{80\!\cdots\!79}{85\!\cdots\!28}a^{4}-\frac{55\!\cdots\!11}{45\!\cdots\!84}a^{3}+\frac{68\!\cdots\!35}{85\!\cdots\!28}a^{2}-\frac{10\!\cdots\!25}{22\!\cdots\!92}a+\frac{21\!\cdots\!31}{85\!\cdots\!28}$, $\frac{21\!\cdots\!11}{21\!\cdots\!32}a^{34}+\frac{14\!\cdots\!73}{21\!\cdots\!32}a^{32}+\frac{53\!\cdots\!42}{26\!\cdots\!29}a^{30}+\frac{73\!\cdots\!81}{21\!\cdots\!32}a^{28}+\frac{39\!\cdots\!99}{10\!\cdots\!16}a^{26}+\frac{58\!\cdots\!55}{21\!\cdots\!32}a^{24}+\frac{30\!\cdots\!69}{21\!\cdots\!32}a^{22}+\frac{13\!\cdots\!73}{26\!\cdots\!29}a^{20}+\frac{29\!\cdots\!39}{21\!\cdots\!32}a^{18}+\frac{28\!\cdots\!29}{10\!\cdots\!16}a^{16}+\frac{81\!\cdots\!89}{21\!\cdots\!32}a^{14}+\frac{82\!\cdots\!83}{21\!\cdots\!32}a^{12}+\frac{58\!\cdots\!17}{21\!\cdots\!32}a^{10}+\frac{14\!\cdots\!61}{10\!\cdots\!16}a^{8}+\frac{23\!\cdots\!13}{53\!\cdots\!58}a^{6}+\frac{47\!\cdots\!63}{53\!\cdots\!58}a^{4}+\frac{95\!\cdots\!27}{10\!\cdots\!16}a^{2}+\frac{64\!\cdots\!83}{21\!\cdots\!32}$, $\frac{88\!\cdots\!57}{53\!\cdots\!58}a^{34}+\frac{47\!\cdots\!73}{42\!\cdots\!64}a^{32}+\frac{85\!\cdots\!47}{26\!\cdots\!29}a^{30}+\frac{11\!\cdots\!27}{21\!\cdots\!32}a^{28}+\frac{22\!\cdots\!17}{42\!\cdots\!64}a^{26}+\frac{15\!\cdots\!09}{42\!\cdots\!64}a^{24}+\frac{35\!\cdots\!85}{21\!\cdots\!32}a^{22}+\frac{22\!\cdots\!67}{42\!\cdots\!64}a^{20}+\frac{49\!\cdots\!03}{42\!\cdots\!64}a^{18}+\frac{17\!\cdots\!67}{10\!\cdots\!16}a^{16}+\frac{26\!\cdots\!03}{21\!\cdots\!32}a^{14}+\frac{47\!\cdots\!75}{42\!\cdots\!64}a^{12}-\frac{16\!\cdots\!11}{21\!\cdots\!32}a^{10}-\frac{33\!\cdots\!53}{42\!\cdots\!64}a^{8}-\frac{16\!\cdots\!45}{42\!\cdots\!64}a^{6}-\frac{41\!\cdots\!19}{42\!\cdots\!64}a^{4}-\frac{49\!\cdots\!43}{42\!\cdots\!64}a^{2}-\frac{18\!\cdots\!31}{42\!\cdots\!64}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 53188572905191.91 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 53188572905191.91 \cdot 84}{18\cdot\sqrt{38495344535711815175714944020341529038620653445163760678729}}\cr\approx \mathstrut & 0.294685416541016 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 69*x^34 + 2067*x^32 + 35559*x^30 + 392508*x^28 + 2947140*x^26 + 15578598*x^24 + 59180736*x^22 + 163426134*x^20 + 329538049*x^18 + 484507821*x^16 + 515577135*x^14 + 391420464*x^12 + 207035712*x^10 + 73469547*x^8 + 16457853*x^6 + 2099463*x^4 + 127086*x^2 + 2809);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_4\times D_6$ (as 36T334):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 288
The 48 conjugacy class representatives for $C_2\times A_4\times D_6$
Character table for $C_2\times A_4\times D_6$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), 3.3.837.1, 6.0.465831.1, 6.6.1397493.1, 6.0.2101707.2, \(\Q(\zeta_{9})\), 9.9.427468288437.1, 12.0.1952986685049.1, 18.0.548187412857774683708907.1, 18.18.196202305123338994820938613277.1, 18.0.65400768374446331606979537759.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 siblings: deg 36, deg 36, deg 36, deg 36, some data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{6}$ R ${\href{/padicField/5.6.0.1}{6} }^{6}$ ${\href{/padicField/7.6.0.1}{6} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.6.0.1}{6} }^{4}{,}\,{\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ R ${\href{/padicField/37.2.0.1}{2} }^{16}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{18}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$31$
Deg $18$$18$$1$$31$
\(31\) Copy content Toggle raw display 31.6.0.1$x^{6} + 19 x^{3} + 16 x^{2} + 8 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
31.6.0.1$x^{6} + 19 x^{3} + 16 x^{2} + 8 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
31.12.6.1$x^{12} - 14880 x^{11} + 56210037 x^{10} + 37979282185 x^{9} + 6626678058881 x^{8} + 242960454323950 x^{7} + 6470243948822665 x^{6} + 7531774084042450 x^{5} + 6368237614584641 x^{4} + 1131440795573335 x^{3} + 51911149580277 x^{2} - 426001766880 x + 887503681$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
31.12.6.1$x^{12} - 14880 x^{11} + 56210037 x^{10} + 37979282185 x^{9} + 6626678058881 x^{8} + 242960454323950 x^{7} + 6470243948822665 x^{6} + 7531774084042450 x^{5} + 6368237614584641 x^{4} + 1131440795573335 x^{3} + 51911149580277 x^{2} - 426001766880 x + 887503681$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(71\) Copy content Toggle raw display 71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$