Properties

Label 36.0.171...689.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.711\times 10^{67}$
Root discriminant \(73.72\)
Ramified primes $3,7,19$
Class number $2916$ (GRH)
Class group [3, 3, 3, 6, 18] (GRH)
Galois group $C_6^2$ (as 36T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081)
 
gp: K = bnfinit(y^36 - 3*y^35 + 14*y^34 + 25*y^33 - 81*y^32 + 430*y^31 + 649*y^30 - 2959*y^29 + 10672*y^28 - 9183*y^27 + 3994*y^26 - 36672*y^25 + 129037*y^24 - 153463*y^23 - 377431*y^22 + 1507640*y^21 - 2832566*y^20 + 5098422*y^19 + 5245819*y^18 - 14119627*y^17 + 55722175*y^16 - 52547145*y^15 + 205342047*y^14 - 466686704*y^13 + 1314989350*y^12 - 1838473868*y^11 + 1895355654*y^10 - 622211603*y^9 - 531048524*y^8 + 1533170167*y^7 - 241708081*y^6 - 506053254*y^5 + 309479289*y^4 + 94941336*y^3 - 65292451*y^2 - 8212694*y + 10504081, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081)
 

\( x^{36} - 3 x^{35} + 14 x^{34} + 25 x^{33} - 81 x^{32} + 430 x^{31} + 649 x^{30} - 2959 x^{29} + \cdots + 10504081 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(17105807243512371509230217076280919792582365736923687236157265974689\) \(\medspace = 3^{18}\cdot 7^{24}\cdot 19^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(73.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{2/3}19^{5/6}\approx 73.72033863664547$
Ramified primes:   \(3\), \(7\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(399=3\cdot 7\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{399}(1,·)$, $\chi_{399}(107,·)$, $\chi_{399}(134,·)$, $\chi_{399}(8,·)$, $\chi_{399}(11,·)$, $\chi_{399}(274,·)$, $\chi_{399}(277,·)$, $\chi_{399}(151,·)$, $\chi_{399}(284,·)$, $\chi_{399}(163,·)$, $\chi_{399}(37,·)$, $\chi_{399}(296,·)$, $\chi_{399}(170,·)$, $\chi_{399}(172,·)$, $\chi_{399}(46,·)$, $\chi_{399}(305,·)$, $\chi_{399}(50,·)$, $\chi_{399}(179,·)$, $\chi_{399}(58,·)$, $\chi_{399}(316,·)$, $\chi_{399}(191,·)$, $\chi_{399}(64,·)$, $\chi_{399}(65,·)$, $\chi_{399}(197,·)$, $\chi_{399}(331,·)$, $\chi_{399}(88,·)$, $\chi_{399}(221,·)$, $\chi_{399}(106,·)$, $\chi_{399}(235,·)$, $\chi_{399}(239,·)$, $\chi_{399}(368,·)$, $\chi_{399}(113,·)$, $\chi_{399}(373,·)$, $\chi_{399}(121,·)$, $\chi_{399}(379,·)$, $\chi_{399}(254,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{7}a^{21}-\frac{3}{7}a^{15}+\frac{3}{7}a^{9}-\frac{1}{7}a^{3}$, $\frac{1}{7}a^{22}-\frac{3}{7}a^{16}+\frac{3}{7}a^{10}-\frac{1}{7}a^{4}$, $\frac{1}{7}a^{23}-\frac{3}{7}a^{17}+\frac{3}{7}a^{11}-\frac{1}{7}a^{5}$, $\frac{1}{7}a^{24}-\frac{3}{7}a^{18}+\frac{3}{7}a^{12}-\frac{1}{7}a^{6}$, $\frac{1}{7}a^{25}-\frac{3}{7}a^{19}+\frac{3}{7}a^{13}-\frac{1}{7}a^{7}$, $\frac{1}{7}a^{26}-\frac{3}{7}a^{20}+\frac{3}{7}a^{14}-\frac{1}{7}a^{8}$, $\frac{1}{7}a^{27}+\frac{1}{7}a^{15}+\frac{1}{7}a^{9}-\frac{3}{7}a^{3}$, $\frac{1}{49}a^{28}+\frac{2}{49}a^{27}+\frac{3}{49}a^{26}-\frac{1}{49}a^{25}-\frac{3}{49}a^{24}+\frac{1}{49}a^{23}-\frac{3}{49}a^{22}+\frac{1}{49}a^{21}+\frac{19}{49}a^{20}-\frac{11}{49}a^{19}-\frac{19}{49}a^{18}+\frac{18}{49}a^{17}-\frac{11}{49}a^{16}-\frac{15}{49}a^{15}+\frac{16}{49}a^{14}+\frac{4}{49}a^{13}-\frac{23}{49}a^{12}+\frac{17}{49}a^{11}+\frac{13}{49}a^{10}-\frac{9}{49}a^{9}+\frac{11}{49}a^{8}+\frac{1}{49}a^{7}-\frac{18}{49}a^{6}-\frac{8}{49}a^{5}+\frac{1}{7}a^{4}-\frac{1}{7}a^{3}-\frac{1}{7}a^{2}$, $\frac{1}{49}a^{29}-\frac{1}{49}a^{27}-\frac{1}{49}a^{25}+\frac{2}{49}a^{23}+\frac{3}{49}a^{21}-\frac{3}{7}a^{20}+\frac{3}{49}a^{19}-\frac{3}{7}a^{18}-\frac{19}{49}a^{17}-\frac{3}{7}a^{16}-\frac{10}{49}a^{15}-\frac{1}{7}a^{14}+\frac{18}{49}a^{13}-\frac{1}{7}a^{12}-\frac{1}{7}a^{10}-\frac{13}{49}a^{9}+\frac{3}{7}a^{8}-\frac{20}{49}a^{7}-\frac{2}{7}a^{6}+\frac{16}{49}a^{5}-\frac{2}{7}a^{4}+\frac{3}{7}a^{3}+\frac{2}{7}a^{2}$, $\frac{1}{2695}a^{30}+\frac{2}{245}a^{29}-\frac{4}{539}a^{28}-\frac{19}{539}a^{27}-\frac{86}{2695}a^{26}+\frac{109}{2695}a^{25}-\frac{81}{2695}a^{24}-\frac{16}{539}a^{23}+\frac{109}{2695}a^{22}-\frac{11}{245}a^{21}+\frac{734}{2695}a^{20}-\frac{131}{2695}a^{19}+\frac{256}{539}a^{18}+\frac{1053}{2695}a^{17}+\frac{472}{2695}a^{16}-\frac{271}{2695}a^{15}+\frac{248}{539}a^{14}+\frac{218}{539}a^{13}-\frac{1313}{2695}a^{12}-\frac{57}{2695}a^{11}-\frac{316}{2695}a^{10}-\frac{114}{539}a^{9}+\frac{408}{2695}a^{8}-\frac{683}{2695}a^{7}+\frac{234}{539}a^{6}-\frac{188}{385}a^{5}+\frac{24}{385}a^{4}-\frac{164}{385}a^{3}-\frac{4}{11}a^{2}+\frac{13}{55}a+\frac{14}{55}$, $\frac{1}{2695}a^{31}-\frac{9}{2695}a^{29}+\frac{3}{539}a^{28}+\frac{79}{2695}a^{27}-\frac{144}{2695}a^{26}+\frac{51}{2695}a^{25}-\frac{3}{2695}a^{24}-\frac{166}{2695}a^{23}+\frac{1}{245}a^{22}-\frac{69}{2695}a^{21}+\frac{166}{2695}a^{20}+\frac{1192}{2695}a^{19}+\frac{1108}{2695}a^{18}-\frac{309}{2695}a^{17}-\frac{96}{539}a^{16}-\frac{1268}{2695}a^{15}-\frac{134}{539}a^{14}+\frac{166}{385}a^{13}+\frac{614}{2695}a^{12}+\frac{718}{2695}a^{11}+\frac{552}{2695}a^{10}+\frac{243}{2695}a^{9}+\frac{956}{2695}a^{8}+\frac{576}{2695}a^{7}-\frac{1096}{2695}a^{6}-\frac{149}{539}a^{5}+\frac{78}{385}a^{4}+\frac{113}{385}a^{3}-\frac{129}{385}a^{2}+\frac{3}{55}a+\frac{2}{5}$, $\frac{1}{44065945}a^{32}-\frac{3939}{44065945}a^{31}+\frac{1033}{44065945}a^{30}+\frac{13955}{8813189}a^{29}+\frac{218639}{44065945}a^{28}-\frac{281108}{8813189}a^{27}+\frac{7355}{8813189}a^{26}+\frac{1609821}{44065945}a^{25}-\frac{540471}{44065945}a^{24}-\frac{204950}{8813189}a^{23}-\frac{36110}{801199}a^{22}+\frac{616608}{8813189}a^{21}-\frac{18577129}{44065945}a^{20}-\frac{344093}{899305}a^{19}+\frac{2448652}{6295135}a^{18}+\frac{17227367}{44065945}a^{17}-\frac{20962}{223685}a^{16}-\frac{1844541}{8813189}a^{15}+\frac{14073492}{44065945}a^{14}-\frac{5367099}{44065945}a^{13}+\frac{14133631}{44065945}a^{12}-\frac{21769809}{44065945}a^{11}-\frac{14619802}{44065945}a^{10}+\frac{13614604}{44065945}a^{9}-\frac{1664526}{6295135}a^{8}-\frac{3723981}{44065945}a^{7}-\frac{5046241}{44065945}a^{6}-\frac{17824826}{44065945}a^{5}+\frac{1242039}{6295135}a^{4}-\frac{1204514}{6295135}a^{3}-\frac{953713}{6295135}a^{2}-\frac{290244}{899305}a+\frac{4561}{179861}$, $\frac{1}{1233846460}a^{33}+\frac{3}{616923230}a^{32}+\frac{31484}{308461615}a^{31}-\frac{751}{12590270}a^{30}+\frac{12017351}{1233846460}a^{29}+\frac{2272769}{246769292}a^{28}-\frac{1637956}{44065945}a^{27}+\frac{14908618}{308461615}a^{26}+\frac{8858613}{246769292}a^{25}+\frac{19188557}{616923230}a^{24}+\frac{1428528}{308461615}a^{23}+\frac{77764881}{1233846460}a^{22}+\frac{16754978}{308461615}a^{21}-\frac{235183}{16023980}a^{20}-\frac{263060597}{1233846460}a^{19}+\frac{328253271}{1233846460}a^{18}-\frac{46915593}{123384646}a^{17}-\frac{573861741}{1233846460}a^{16}+\frac{452529141}{1233846460}a^{15}+\frac{141776274}{308461615}a^{14}+\frac{19822443}{88131890}a^{13}+\frac{59360331}{616923230}a^{12}+\frac{609103233}{1233846460}a^{11}+\frac{40248993}{112167860}a^{10}-\frac{18644443}{112167860}a^{9}-\frac{10775133}{308461615}a^{8}+\frac{377786561}{1233846460}a^{7}-\frac{563830259}{1233846460}a^{6}-\frac{38307477}{176263780}a^{5}-\frac{22324917}{176263780}a^{4}+\frac{2995213}{16023980}a^{3}-\frac{264332}{1259027}a^{2}+\frac{996311}{2518054}a-\frac{11181561}{25180540}$, $\frac{1}{80\!\cdots\!60}a^{34}-\frac{14\!\cdots\!03}{40\!\cdots\!30}a^{33}+\frac{30\!\cdots\!53}{28\!\cdots\!45}a^{32}+\frac{26\!\cdots\!31}{40\!\cdots\!30}a^{31}-\frac{13\!\cdots\!61}{16\!\cdots\!52}a^{30}+\frac{34\!\cdots\!43}{11\!\cdots\!80}a^{29}-\frac{15\!\cdots\!12}{20\!\cdots\!15}a^{28}-\frac{96\!\cdots\!86}{20\!\cdots\!15}a^{27}+\frac{97\!\cdots\!55}{14\!\cdots\!32}a^{26}-\frac{27\!\cdots\!91}{40\!\cdots\!30}a^{25}+\frac{25\!\cdots\!04}{40\!\cdots\!63}a^{24}+\frac{20\!\cdots\!35}{22\!\cdots\!36}a^{23}-\frac{87\!\cdots\!14}{20\!\cdots\!15}a^{22}-\frac{18\!\cdots\!31}{80\!\cdots\!60}a^{21}-\frac{13\!\cdots\!81}{80\!\cdots\!60}a^{20}+\frac{30\!\cdots\!37}{17\!\cdots\!20}a^{19}-\frac{12\!\cdots\!23}{36\!\cdots\!30}a^{18}+\frac{10\!\cdots\!69}{22\!\cdots\!36}a^{17}-\frac{11\!\cdots\!11}{80\!\cdots\!60}a^{16}-\frac{19\!\cdots\!55}{40\!\cdots\!63}a^{15}+\frac{45\!\cdots\!09}{73\!\cdots\!66}a^{14}-\frac{59\!\cdots\!49}{40\!\cdots\!30}a^{13}-\frac{11\!\cdots\!41}{11\!\cdots\!80}a^{12}-\frac{34\!\cdots\!19}{11\!\cdots\!80}a^{11}+\frac{63\!\cdots\!43}{16\!\cdots\!40}a^{10}-\frac{19\!\cdots\!16}{48\!\cdots\!61}a^{9}+\frac{21\!\cdots\!41}{80\!\cdots\!60}a^{8}+\frac{23\!\cdots\!77}{80\!\cdots\!60}a^{7}-\frac{24\!\cdots\!63}{80\!\cdots\!60}a^{6}+\frac{84\!\cdots\!83}{11\!\cdots\!80}a^{5}+\frac{41\!\cdots\!59}{22\!\cdots\!36}a^{4}-\frac{11\!\cdots\!68}{28\!\cdots\!45}a^{3}+\frac{11\!\cdots\!93}{82\!\cdots\!70}a^{2}-\frac{30\!\cdots\!31}{14\!\cdots\!40}a+\frac{11\!\cdots\!79}{88\!\cdots\!45}$, $\frac{1}{10\!\cdots\!20}a^{35}-\frac{29\!\cdots\!89}{10\!\cdots\!20}a^{34}+\frac{36\!\cdots\!19}{54\!\cdots\!10}a^{33}-\frac{20\!\cdots\!71}{54\!\cdots\!10}a^{32}-\frac{17\!\cdots\!83}{10\!\cdots\!20}a^{31}+\frac{51\!\cdots\!31}{54\!\cdots\!51}a^{30}+\frac{85\!\cdots\!77}{10\!\cdots\!20}a^{29}-\frac{22\!\cdots\!34}{39\!\cdots\!65}a^{28}+\frac{59\!\cdots\!29}{10\!\cdots\!20}a^{27}+\frac{69\!\cdots\!59}{10\!\cdots\!20}a^{26}+\frac{38\!\cdots\!51}{54\!\cdots\!10}a^{25}+\frac{71\!\cdots\!61}{10\!\cdots\!20}a^{24}-\frac{65\!\cdots\!59}{10\!\cdots\!20}a^{23}-\frac{51\!\cdots\!63}{10\!\cdots\!20}a^{22}+\frac{93\!\cdots\!07}{24\!\cdots\!05}a^{21}-\frac{72\!\cdots\!73}{54\!\cdots\!10}a^{20}+\frac{11\!\cdots\!97}{14\!\cdots\!60}a^{19}-\frac{53\!\cdots\!43}{10\!\cdots\!20}a^{18}+\frac{82\!\cdots\!64}{27\!\cdots\!55}a^{17}+\frac{11\!\cdots\!81}{10\!\cdots\!20}a^{16}-\frac{36\!\cdots\!43}{13\!\cdots\!22}a^{15}-\frac{90\!\cdots\!72}{27\!\cdots\!55}a^{14}+\frac{49\!\cdots\!11}{10\!\cdots\!20}a^{13}-\frac{16\!\cdots\!62}{39\!\cdots\!65}a^{12}+\frac{32\!\cdots\!71}{78\!\cdots\!30}a^{11}-\frac{15\!\cdots\!53}{10\!\cdots\!20}a^{10}-\frac{16\!\cdots\!69}{99\!\cdots\!20}a^{9}-\frac{24\!\cdots\!17}{54\!\cdots\!10}a^{8}-\frac{97\!\cdots\!39}{54\!\cdots\!10}a^{7}-\frac{14\!\cdots\!63}{54\!\cdots\!10}a^{6}-\frac{31\!\cdots\!77}{14\!\cdots\!26}a^{5}-\frac{18\!\cdots\!67}{14\!\cdots\!60}a^{4}-\frac{23\!\cdots\!03}{71\!\cdots\!30}a^{3}-\frac{46\!\cdots\!67}{22\!\cdots\!80}a^{2}+\frac{37\!\cdots\!93}{32\!\cdots\!40}a+\frac{24\!\cdots\!97}{12\!\cdots\!65}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $7$

Class group and class number

$C_{3}\times C_{3}\times C_{3}\times C_{6}\times C_{18}$, which has order $2916$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{424609632987909626277322655667936271665285397095958557068434222385812018813281413}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{35} + \frac{105149956726707673325862281606657477729305360205351290004584212901259960096585955}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{34} + \frac{849781176751951167416985785203537433705299639575928519715456501779181872778313357}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{33} + \frac{2175904534471410930701707242415564208074280798126952988681676300332048972744634269}{6173015415947014588908944441637538809207171348249471298446240162941657629968954509763814} a^{32} - \frac{1990555510810436756080891817086404155148572121071574602206397979338331700766201435}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{31} + \frac{2539785877085519919858676200984360813797483765050708392184638061300474719321495830}{3086507707973507294454472220818769404603585674124735649223120081470828814984477254881907} a^{30} + \frac{126223422073777708905396325624490660023125932586377854197271217577120243899177307715}{12346030831894029177817888883275077618414342696498942596892480325883315259937909019527628} a^{29} - \frac{105245649207971886877975604085820591868839924093737846234134631349353369263281253799}{21605553955814551061181305545731385832225099718873149544561840570295801704891340784173349} a^{28} + \frac{471306695621861535908681100118643615609348275154405465012498904560072381119319397689}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{27} + \frac{11305617337457079439149860945807359134003661417499801796146991156222728752002797331727}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{26} - \frac{6317888237955326976985197407299368561435324354296282807486563505385881712873660743099}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{25} - \frac{6911067722679082564556437291187428209795055497987627666902768834426674534786902883035}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{24} + \frac{2314125633679022621447223990160154856300562761661087042950756681963942931898240593753}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{23} + \frac{118397285198349440575408492634290117044232058789482932466883245662513815666062925503009}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{22} - \frac{98678963042853515983260537367995356046179572436481464236684353061705815799705637320364}{21605553955814551061181305545731385832225099718873149544561840570295801704891340784173349} a^{21} + \frac{80667153664325231449583778272366844526694708240839833769180020744160066152637133111449}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{20} + \frac{889262221210982443932761721994893186838238120562495751985379608594847776842867470545237}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{19} - \frac{1979850180043330522614314380492870088421555275873569025621998723814824063849666517596259}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{18} + \frac{2458614347822980748698963998991391209995790894987237631546287222895906749132334910331012}{21605553955814551061181305545731385832225099718873149544561840570295801704891340784173349} a^{17} + \frac{147754589638172823182773983308032597301390972610889840291060032452770475912296295972373}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{16} + \frac{20806952966782765241171882052024081609615167321370875086030610010214607935590959034973}{382399185058664620551881514083741342163276101218993797248882133987536313360908686445546} a^{15} + \frac{14312997063923960947549927978946857347979050743950810418350994505064420705405791299579217}{21605553955814551061181305545731385832225099718873149544561840570295801704891340784173349} a^{14} + \frac{986035240895106792425193940086701615143477623901171993268388563115293618891820669801417}{12346030831894029177817888883275077618414342696498942596892480325883315259937909019527628} a^{13} + \frac{25604897238138886650573584780091783786209699756812312707003984296464643015398878409809793}{21605553955814551061181305545731385832225099718873149544561840570295801704891340784173349} a^{12} - \frac{57856382468109436965387525156089513200211713663039285022069003840826955749685109748892085}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{11} + \frac{1131318739498647445542335354833448577083380646203848826726006907986694524706250055181717695}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{10} - \frac{1962480165876979927515682349817093642006213460534505375949857855123062385512018087743172211}{86422215823258204244725222182925543328900398875492598178247362281183206819565363136693396} a^{9} + \frac{1411455524952565845033791409689484504748154910023149902185679528580871113045276503520717133}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{8} - \frac{820223847495759461950809438445016774097816566126222774680692906296966225666610067382512695}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{7} + \frac{215464210719293134936675595419431434570826778478315027587143414049278058968470033428128299}{43211107911629102122362611091462771664450199437746299089123681140591603409782681568346698} a^{6} + \frac{130709538836849417630567189309903880253960992926162645194196664486380254291468285337008553}{6173015415947014588908944441637538809207171348249471298446240162941657629968954509763814} a^{5} - \frac{87408935179913622552185759128461103836360561090348396011195332968413012411342206734667381}{12346030831894029177817888883275077618414342696498942596892480325883315259937909019527628} a^{4} - \frac{26397062782606970421712845385240364067253309440856829439152847437534328560039480147348407}{6173015415947014588908944441637538809207171348249471298446240162941657629968954509763814} a^{3} + \frac{11510002688446125805311237091643827800625069919541731934978021651645491068340299043581185}{1763718690270575596831126983325011088344906099499848942413211475126187894276844145646804} a^{2} + \frac{1246800441953366595554901186986668067492665461749914701266629781904656500678477590265427}{1763718690270575596831126983325011088344906099499848942413211475126187894276844145646804} a - \frac{248493887011793092355391721463854305010644953637972001150611065220294899901821113038}{952331906193615333062163597907673373836342386339011307998494317022779640538252778427} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!09}{24\!\cdots\!05}a^{35}-\frac{46\!\cdots\!71}{99\!\cdots\!20}a^{34}+\frac{37\!\cdots\!32}{24\!\cdots\!05}a^{33}-\frac{89\!\cdots\!96}{24\!\cdots\!05}a^{32}-\frac{12\!\cdots\!43}{99\!\cdots\!82}a^{31}+\frac{21\!\cdots\!63}{50\!\cdots\!60}a^{30}-\frac{11\!\cdots\!69}{99\!\cdots\!20}a^{29}-\frac{18\!\cdots\!97}{49\!\cdots\!10}a^{28}+\frac{34\!\cdots\!53}{24\!\cdots\!05}a^{27}-\frac{76\!\cdots\!35}{19\!\cdots\!64}a^{26}+\frac{62\!\cdots\!31}{24\!\cdots\!05}a^{25}-\frac{93\!\cdots\!53}{35\!\cdots\!15}a^{24}+\frac{17\!\cdots\!41}{99\!\cdots\!20}a^{23}-\frac{23\!\cdots\!59}{49\!\cdots\!10}a^{22}+\frac{27\!\cdots\!61}{99\!\cdots\!20}a^{21}+\frac{19\!\cdots\!61}{99\!\cdots\!20}a^{20}-\frac{58\!\cdots\!59}{99\!\cdots\!20}a^{19}+\frac{26\!\cdots\!48}{24\!\cdots\!05}a^{18}-\frac{13\!\cdots\!09}{99\!\cdots\!20}a^{17}-\frac{53\!\cdots\!25}{19\!\cdots\!64}a^{16}+\frac{28\!\cdots\!49}{44\!\cdots\!70}a^{15}-\frac{10\!\cdots\!07}{49\!\cdots\!10}a^{14}+\frac{11\!\cdots\!69}{49\!\cdots\!10}a^{13}-\frac{87\!\cdots\!47}{99\!\cdots\!20}a^{12}+\frac{19\!\cdots\!53}{99\!\cdots\!20}a^{11}-\frac{70\!\cdots\!89}{14\!\cdots\!60}a^{10}+\frac{30\!\cdots\!81}{49\!\cdots\!10}a^{9}-\frac{57\!\cdots\!79}{99\!\cdots\!20}a^{8}+\frac{10\!\cdots\!31}{99\!\cdots\!20}a^{7}+\frac{22\!\cdots\!59}{99\!\cdots\!20}a^{6}-\frac{70\!\cdots\!79}{14\!\cdots\!60}a^{5}-\frac{17\!\cdots\!79}{14\!\cdots\!60}a^{4}+\frac{73\!\cdots\!87}{71\!\cdots\!30}a^{3}-\frac{62\!\cdots\!89}{10\!\cdots\!90}a^{2}-\frac{40\!\cdots\!13}{20\!\cdots\!80}a+\frac{31\!\cdots\!31}{21\!\cdots\!30}$, $\frac{24\!\cdots\!91}{99\!\cdots\!20}a^{35}-\frac{72\!\cdots\!63}{99\!\cdots\!82}a^{34}+\frac{35\!\cdots\!71}{99\!\cdots\!20}a^{33}+\frac{20\!\cdots\!92}{35\!\cdots\!15}a^{32}-\frac{18\!\cdots\!51}{99\!\cdots\!20}a^{31}+\frac{30\!\cdots\!23}{28\!\cdots\!52}a^{30}+\frac{21\!\cdots\!31}{14\!\cdots\!60}a^{29}-\frac{67\!\cdots\!29}{99\!\cdots\!20}a^{28}+\frac{52\!\cdots\!35}{19\!\cdots\!64}a^{27}-\frac{15\!\cdots\!51}{60\!\cdots\!70}a^{26}+\frac{41\!\cdots\!11}{19\!\cdots\!64}a^{25}-\frac{10\!\cdots\!63}{99\!\cdots\!20}a^{24}+\frac{80\!\cdots\!62}{24\!\cdots\!05}a^{23}-\frac{20\!\cdots\!17}{49\!\cdots\!10}a^{22}-\frac{78\!\cdots\!31}{99\!\cdots\!20}a^{21}+\frac{86\!\cdots\!71}{24\!\cdots\!05}a^{20}-\frac{71\!\cdots\!93}{99\!\cdots\!20}a^{19}+\frac{69\!\cdots\!73}{49\!\cdots\!10}a^{18}+\frac{96\!\cdots\!01}{99\!\cdots\!20}a^{17}-\frac{27\!\cdots\!03}{99\!\cdots\!20}a^{16}+\frac{24\!\cdots\!17}{17\!\cdots\!28}a^{15}-\frac{70\!\cdots\!43}{49\!\cdots\!10}a^{14}+\frac{79\!\cdots\!11}{14\!\cdots\!60}a^{13}-\frac{29\!\cdots\!79}{24\!\cdots\!08}a^{12}+\frac{85\!\cdots\!68}{24\!\cdots\!05}a^{11}-\frac{49\!\cdots\!11}{99\!\cdots\!20}a^{10}+\frac{15\!\cdots\!39}{24\!\cdots\!05}a^{9}-\frac{39\!\cdots\!09}{99\!\cdots\!20}a^{8}+\frac{75\!\cdots\!53}{49\!\cdots\!10}a^{7}+\frac{26\!\cdots\!39}{14\!\cdots\!90}a^{6}-\frac{30\!\cdots\!19}{14\!\cdots\!26}a^{5}-\frac{22\!\cdots\!71}{14\!\cdots\!60}a^{4}+\frac{11\!\cdots\!59}{14\!\cdots\!60}a^{3}-\frac{55\!\cdots\!69}{24\!\cdots\!60}a^{2}+\frac{44\!\cdots\!13}{10\!\cdots\!90}a+\frac{24\!\cdots\!19}{43\!\cdots\!60}$, $\frac{15\!\cdots\!72}{57\!\cdots\!15}a^{35}-\frac{88\!\cdots\!84}{10\!\cdots\!73}a^{34}+\frac{22\!\cdots\!79}{57\!\cdots\!15}a^{33}+\frac{36\!\cdots\!06}{57\!\cdots\!15}a^{32}-\frac{12\!\cdots\!58}{57\!\cdots\!15}a^{31}+\frac{13\!\cdots\!52}{11\!\cdots\!03}a^{30}+\frac{93\!\cdots\!31}{57\!\cdots\!15}a^{29}-\frac{94\!\cdots\!17}{11\!\cdots\!03}a^{28}+\frac{17\!\cdots\!09}{57\!\cdots\!15}a^{27}-\frac{16\!\cdots\!83}{57\!\cdots\!15}a^{26}+\frac{12\!\cdots\!76}{81\!\cdots\!45}a^{25}-\frac{12\!\cdots\!94}{11\!\cdots\!03}a^{24}+\frac{42\!\cdots\!50}{11\!\cdots\!03}a^{23}-\frac{26\!\cdots\!76}{57\!\cdots\!15}a^{22}-\frac{55\!\cdots\!53}{57\!\cdots\!15}a^{21}+\frac{10\!\cdots\!99}{25\!\cdots\!45}a^{20}-\frac{46\!\cdots\!54}{57\!\cdots\!15}a^{19}+\frac{86\!\cdots\!87}{57\!\cdots\!15}a^{18}+\frac{68\!\cdots\!21}{57\!\cdots\!15}a^{17}-\frac{22\!\cdots\!86}{57\!\cdots\!15}a^{16}+\frac{88\!\cdots\!97}{57\!\cdots\!15}a^{15}-\frac{93\!\cdots\!36}{57\!\cdots\!15}a^{14}+\frac{67\!\cdots\!11}{11\!\cdots\!03}a^{13}-\frac{71\!\cdots\!14}{51\!\cdots\!65}a^{12}+\frac{21\!\cdots\!87}{57\!\cdots\!15}a^{11}-\frac{90\!\cdots\!27}{16\!\cdots\!29}a^{10}+\frac{34\!\cdots\!29}{57\!\cdots\!15}a^{9}-\frac{17\!\cdots\!21}{57\!\cdots\!15}a^{8}-\frac{17\!\cdots\!28}{57\!\cdots\!15}a^{7}+\frac{25\!\cdots\!97}{74\!\cdots\!95}a^{6}-\frac{18\!\cdots\!41}{21\!\cdots\!77}a^{5}-\frac{82\!\cdots\!78}{81\!\cdots\!45}a^{4}+\frac{26\!\cdots\!23}{11\!\cdots\!35}a^{3}+\frac{20\!\cdots\!83}{11\!\cdots\!35}a^{2}-\frac{10\!\cdots\!97}{25\!\cdots\!45}a+\frac{35\!\cdots\!02}{32\!\cdots\!85}$, $\frac{84\!\cdots\!25}{37\!\cdots\!04}a^{35}-\frac{84\!\cdots\!71}{65\!\cdots\!70}a^{34}+\frac{43\!\cdots\!97}{92\!\cdots\!10}a^{33}-\frac{13\!\cdots\!61}{65\!\cdots\!70}a^{32}-\frac{48\!\cdots\!31}{13\!\cdots\!40}a^{31}+\frac{35\!\cdots\!11}{26\!\cdots\!28}a^{30}-\frac{62\!\cdots\!19}{65\!\cdots\!70}a^{29}-\frac{76\!\cdots\!77}{65\!\cdots\!70}a^{28}+\frac{51\!\cdots\!23}{13\!\cdots\!40}a^{27}-\frac{72\!\cdots\!41}{92\!\cdots\!10}a^{26}+\frac{24\!\cdots\!39}{65\!\cdots\!70}a^{25}-\frac{24\!\cdots\!37}{26\!\cdots\!28}a^{24}+\frac{33\!\cdots\!00}{65\!\cdots\!57}a^{23}-\frac{13\!\cdots\!43}{13\!\cdots\!40}a^{22}-\frac{32\!\cdots\!27}{13\!\cdots\!40}a^{21}+\frac{15\!\cdots\!15}{26\!\cdots\!28}a^{20}-\frac{42\!\cdots\!82}{29\!\cdots\!35}a^{19}+\frac{16\!\cdots\!87}{66\!\cdots\!20}a^{18}-\frac{18\!\cdots\!93}{14\!\cdots\!80}a^{17}-\frac{49\!\cdots\!39}{65\!\cdots\!70}a^{16}+\frac{55\!\cdots\!11}{28\!\cdots\!45}a^{15}-\frac{27\!\cdots\!47}{65\!\cdots\!70}a^{14}+\frac{83\!\cdots\!87}{13\!\cdots\!40}a^{13}-\frac{57\!\cdots\!27}{26\!\cdots\!28}a^{12}+\frac{68\!\cdots\!79}{13\!\cdots\!40}a^{11}-\frac{14\!\cdots\!87}{13\!\cdots\!14}a^{10}+\frac{15\!\cdots\!33}{13\!\cdots\!40}a^{9}-\frac{11\!\cdots\!93}{13\!\cdots\!40}a^{8}-\frac{30\!\cdots\!51}{26\!\cdots\!28}a^{7}+\frac{19\!\cdots\!73}{26\!\cdots\!28}a^{6}-\frac{17\!\cdots\!17}{18\!\cdots\!20}a^{5}-\frac{18\!\cdots\!17}{92\!\cdots\!10}a^{4}+\frac{91\!\cdots\!09}{46\!\cdots\!55}a^{3}-\frac{70\!\cdots\!31}{26\!\cdots\!60}a^{2}-\frac{26\!\cdots\!52}{66\!\cdots\!65}a-\frac{62\!\cdots\!67}{34\!\cdots\!70}$, $\frac{22\!\cdots\!99}{10\!\cdots\!20}a^{35}-\frac{64\!\cdots\!19}{10\!\cdots\!20}a^{34}+\frac{30\!\cdots\!57}{10\!\cdots\!20}a^{33}+\frac{15\!\cdots\!76}{27\!\cdots\!55}a^{32}-\frac{17\!\cdots\!73}{10\!\cdots\!20}a^{31}+\frac{47\!\cdots\!99}{54\!\cdots\!10}a^{30}+\frac{42\!\cdots\!86}{27\!\cdots\!55}a^{29}-\frac{64\!\cdots\!41}{10\!\cdots\!20}a^{28}+\frac{23\!\cdots\!51}{10\!\cdots\!20}a^{27}-\frac{15\!\cdots\!97}{99\!\cdots\!20}a^{26}+\frac{69\!\cdots\!69}{10\!\cdots\!20}a^{25}-\frac{85\!\cdots\!31}{10\!\cdots\!20}a^{24}+\frac{28\!\cdots\!87}{10\!\cdots\!20}a^{23}-\frac{14\!\cdots\!97}{54\!\cdots\!10}a^{22}-\frac{22\!\cdots\!72}{27\!\cdots\!55}a^{21}+\frac{29\!\cdots\!27}{99\!\cdots\!20}a^{20}-\frac{14\!\cdots\!29}{27\!\cdots\!55}a^{19}+\frac{38\!\cdots\!93}{39\!\cdots\!65}a^{18}+\frac{98\!\cdots\!37}{78\!\cdots\!30}a^{17}-\frac{10\!\cdots\!59}{39\!\cdots\!65}a^{16}+\frac{10\!\cdots\!97}{97\!\cdots\!40}a^{15}-\frac{24\!\cdots\!99}{27\!\cdots\!55}a^{14}+\frac{45\!\cdots\!51}{10\!\cdots\!20}a^{13}-\frac{49\!\cdots\!61}{54\!\cdots\!10}a^{12}+\frac{56\!\cdots\!45}{21\!\cdots\!04}a^{11}-\frac{40\!\cdots\!77}{11\!\cdots\!70}a^{10}+\frac{94\!\cdots\!11}{27\!\cdots\!55}a^{9}-\frac{51\!\cdots\!51}{54\!\cdots\!10}a^{8}-\frac{94\!\cdots\!91}{10\!\cdots\!20}a^{7}+\frac{28\!\cdots\!49}{10\!\cdots\!20}a^{6}+\frac{40\!\cdots\!81}{22\!\cdots\!80}a^{5}-\frac{10\!\cdots\!31}{11\!\cdots\!90}a^{4}+\frac{30\!\cdots\!41}{14\!\cdots\!60}a^{3}+\frac{51\!\cdots\!19}{22\!\cdots\!80}a^{2}-\frac{10\!\cdots\!89}{22\!\cdots\!80}a-\frac{18\!\cdots\!17}{48\!\cdots\!60}$, $\frac{15\!\cdots\!03}{27\!\cdots\!55}a^{35}-\frac{20\!\cdots\!07}{99\!\cdots\!20}a^{34}+\frac{24\!\cdots\!28}{27\!\cdots\!55}a^{33}+\frac{23\!\cdots\!76}{27\!\cdots\!55}a^{32}-\frac{62\!\cdots\!57}{10\!\cdots\!02}a^{31}+\frac{29\!\cdots\!33}{10\!\cdots\!20}a^{30}+\frac{21\!\cdots\!73}{10\!\cdots\!20}a^{29}-\frac{15\!\cdots\!71}{78\!\cdots\!30}a^{28}+\frac{19\!\cdots\!12}{27\!\cdots\!55}a^{27}-\frac{10\!\cdots\!81}{10\!\cdots\!20}a^{26}+\frac{15\!\cdots\!29}{27\!\cdots\!55}a^{25}-\frac{12\!\cdots\!84}{54\!\cdots\!51}a^{24}+\frac{97\!\cdots\!51}{10\!\cdots\!20}a^{23}-\frac{74\!\cdots\!09}{54\!\cdots\!10}a^{22}-\frac{17\!\cdots\!09}{10\!\cdots\!20}a^{21}+\frac{10\!\cdots\!59}{10\!\cdots\!20}a^{20}-\frac{48\!\cdots\!73}{22\!\cdots\!80}a^{19}+\frac{10\!\cdots\!47}{27\!\cdots\!55}a^{18}+\frac{20\!\cdots\!21}{21\!\cdots\!04}a^{17}-\frac{11\!\cdots\!83}{10\!\cdots\!20}a^{16}+\frac{24\!\cdots\!27}{69\!\cdots\!10}a^{15}-\frac{56\!\cdots\!73}{10\!\cdots\!02}a^{14}+\frac{14\!\cdots\!29}{10\!\cdots\!02}a^{13}-\frac{50\!\cdots\!21}{14\!\cdots\!60}a^{12}+\frac{14\!\cdots\!81}{15\!\cdots\!60}a^{11}-\frac{34\!\cdots\!45}{21\!\cdots\!04}a^{10}+\frac{97\!\cdots\!17}{54\!\cdots\!10}a^{9}-\frac{12\!\cdots\!41}{10\!\cdots\!20}a^{8}+\frac{55\!\cdots\!97}{10\!\cdots\!20}a^{7}+\frac{17\!\cdots\!95}{19\!\cdots\!64}a^{6}-\frac{94\!\cdots\!31}{14\!\cdots\!60}a^{5}-\frac{32\!\cdots\!13}{15\!\cdots\!60}a^{4}+\frac{11\!\cdots\!41}{78\!\cdots\!30}a^{3}-\frac{30\!\cdots\!73}{11\!\cdots\!90}a^{2}-\frac{56\!\cdots\!29}{32\!\cdots\!40}a-\frac{29\!\cdots\!89}{21\!\cdots\!30}$, $\frac{36\!\cdots\!49}{54\!\cdots\!51}a^{35}-\frac{46\!\cdots\!08}{27\!\cdots\!55}a^{34}+\frac{91\!\cdots\!01}{10\!\cdots\!20}a^{33}+\frac{10\!\cdots\!17}{49\!\cdots\!10}a^{32}-\frac{11\!\cdots\!22}{24\!\cdots\!05}a^{31}+\frac{37\!\cdots\!03}{14\!\cdots\!90}a^{30}+\frac{12\!\cdots\!79}{21\!\cdots\!04}a^{29}-\frac{39\!\cdots\!43}{22\!\cdots\!80}a^{28}+\frac{16\!\cdots\!73}{27\!\cdots\!55}a^{27}-\frac{16\!\cdots\!87}{54\!\cdots\!51}a^{26}-\frac{14\!\cdots\!31}{10\!\cdots\!20}a^{25}-\frac{11\!\cdots\!13}{49\!\cdots\!10}a^{24}+\frac{18\!\cdots\!16}{24\!\cdots\!05}a^{23}-\frac{69\!\cdots\!87}{10\!\cdots\!20}a^{22}-\frac{80\!\cdots\!57}{27\!\cdots\!55}a^{21}+\frac{97\!\cdots\!13}{10\!\cdots\!20}a^{20}-\frac{45\!\cdots\!95}{31\!\cdots\!72}a^{19}+\frac{56\!\cdots\!55}{21\!\cdots\!04}a^{18}+\frac{26\!\cdots\!93}{54\!\cdots\!10}a^{17}-\frac{17\!\cdots\!37}{21\!\cdots\!04}a^{16}+\frac{90\!\cdots\!95}{27\!\cdots\!44}a^{15}-\frac{10\!\cdots\!88}{54\!\cdots\!51}a^{14}+\frac{13\!\cdots\!49}{10\!\cdots\!02}a^{13}-\frac{56\!\cdots\!47}{22\!\cdots\!98}a^{12}+\frac{11\!\cdots\!87}{15\!\cdots\!60}a^{11}-\frac{92\!\cdots\!57}{10\!\cdots\!20}a^{10}+\frac{77\!\cdots\!87}{10\!\cdots\!20}a^{9}+\frac{35\!\cdots\!61}{27\!\cdots\!55}a^{8}-\frac{12\!\cdots\!67}{21\!\cdots\!04}a^{7}+\frac{98\!\cdots\!13}{10\!\cdots\!20}a^{6}+\frac{28\!\cdots\!51}{15\!\cdots\!60}a^{5}-\frac{62\!\cdots\!01}{15\!\cdots\!60}a^{4}+\frac{43\!\cdots\!63}{15\!\cdots\!60}a^{3}+\frac{41\!\cdots\!71}{80\!\cdots\!85}a^{2}-\frac{14\!\cdots\!53}{16\!\cdots\!70}a+\frac{16\!\cdots\!97}{48\!\cdots\!60}$, $\frac{17\!\cdots\!48}{27\!\cdots\!55}a^{35}-\frac{37\!\cdots\!83}{54\!\cdots\!10}a^{34}+\frac{34\!\cdots\!07}{15\!\cdots\!60}a^{33}-\frac{55\!\cdots\!69}{10\!\cdots\!02}a^{32}-\frac{75\!\cdots\!69}{39\!\cdots\!65}a^{31}+\frac{17\!\cdots\!78}{27\!\cdots\!55}a^{30}-\frac{18\!\cdots\!87}{10\!\cdots\!20}a^{29}-\frac{62\!\cdots\!71}{10\!\cdots\!20}a^{28}+\frac{55\!\cdots\!14}{27\!\cdots\!55}a^{27}-\frac{30\!\cdots\!01}{54\!\cdots\!10}a^{26}+\frac{38\!\cdots\!41}{10\!\cdots\!20}a^{25}-\frac{40\!\cdots\!55}{10\!\cdots\!02}a^{24}+\frac{74\!\cdots\!07}{27\!\cdots\!30}a^{23}-\frac{75\!\cdots\!83}{10\!\cdots\!20}a^{22}+\frac{19\!\cdots\!37}{54\!\cdots\!10}a^{21}+\frac{32\!\cdots\!27}{10\!\cdots\!20}a^{20}-\frac{94\!\cdots\!43}{10\!\cdots\!20}a^{19}+\frac{16\!\cdots\!43}{10\!\cdots\!20}a^{18}-\frac{10\!\cdots\!56}{54\!\cdots\!51}a^{17}-\frac{44\!\cdots\!51}{10\!\cdots\!20}a^{16}+\frac{91\!\cdots\!73}{97\!\cdots\!40}a^{15}-\frac{80\!\cdots\!31}{27\!\cdots\!55}a^{14}+\frac{35\!\cdots\!57}{10\!\cdots\!02}a^{13}-\frac{35\!\cdots\!89}{27\!\cdots\!55}a^{12}+\frac{29\!\cdots\!17}{99\!\cdots\!20}a^{11}-\frac{22\!\cdots\!37}{31\!\cdots\!72}a^{10}+\frac{96\!\cdots\!03}{10\!\cdots\!20}a^{9}-\frac{57\!\cdots\!93}{71\!\cdots\!30}a^{8}+\frac{16\!\cdots\!19}{10\!\cdots\!20}a^{7}+\frac{36\!\cdots\!47}{10\!\cdots\!20}a^{6}-\frac{11\!\cdots\!39}{15\!\cdots\!60}a^{5}-\frac{51\!\cdots\!01}{22\!\cdots\!80}a^{4}+\frac{23\!\cdots\!71}{15\!\cdots\!60}a^{3}-\frac{47\!\cdots\!36}{56\!\cdots\!95}a^{2}-\frac{31\!\cdots\!17}{11\!\cdots\!99}a+\frac{94\!\cdots\!81}{48\!\cdots\!60}$, $\frac{40\!\cdots\!01}{10\!\cdots\!20}a^{35}-\frac{85\!\cdots\!99}{27\!\cdots\!55}a^{34}+\frac{72\!\cdots\!51}{27\!\cdots\!55}a^{33}+\frac{10\!\cdots\!31}{49\!\cdots\!10}a^{32}-\frac{27\!\cdots\!09}{21\!\cdots\!04}a^{31}+\frac{10\!\cdots\!91}{10\!\cdots\!20}a^{30}+\frac{33\!\cdots\!31}{54\!\cdots\!10}a^{29}-\frac{18\!\cdots\!36}{27\!\cdots\!55}a^{28}+\frac{30\!\cdots\!35}{19\!\cdots\!64}a^{27}+\frac{15\!\cdots\!52}{27\!\cdots\!55}a^{26}-\frac{43\!\cdots\!18}{54\!\cdots\!51}a^{25}-\frac{17\!\cdots\!07}{21\!\cdots\!04}a^{24}+\frac{92\!\cdots\!87}{54\!\cdots\!10}a^{23}+\frac{59\!\cdots\!69}{10\!\cdots\!20}a^{22}-\frac{31\!\cdots\!91}{10\!\cdots\!20}a^{21}+\frac{32\!\cdots\!41}{10\!\cdots\!20}a^{20}+\frac{55\!\cdots\!81}{27\!\cdots\!55}a^{19}-\frac{20\!\cdots\!87}{31\!\cdots\!72}a^{18}+\frac{10\!\cdots\!17}{15\!\cdots\!60}a^{17}-\frac{48\!\cdots\!91}{22\!\cdots\!98}a^{16}+\frac{88\!\cdots\!75}{97\!\cdots\!54}a^{15}+\frac{77\!\cdots\!83}{27\!\cdots\!30}a^{14}+\frac{26\!\cdots\!13}{10\!\cdots\!20}a^{13}+\frac{64\!\cdots\!97}{10\!\cdots\!20}a^{12}+\frac{75\!\cdots\!87}{99\!\cdots\!20}a^{11}+\frac{52\!\cdots\!97}{10\!\cdots\!02}a^{10}-\frac{11\!\cdots\!59}{10\!\cdots\!20}a^{9}+\frac{19\!\cdots\!47}{10\!\cdots\!20}a^{8}-\frac{13\!\cdots\!13}{10\!\cdots\!20}a^{7}+\frac{53\!\cdots\!61}{99\!\cdots\!20}a^{6}+\frac{32\!\cdots\!05}{31\!\cdots\!72}a^{5}-\frac{55\!\cdots\!43}{11\!\cdots\!90}a^{4}-\frac{16\!\cdots\!39}{78\!\cdots\!30}a^{3}+\frac{88\!\cdots\!19}{22\!\cdots\!80}a^{2}+\frac{35\!\cdots\!49}{11\!\cdots\!90}a-\frac{40\!\cdots\!13}{24\!\cdots\!73}$, $\frac{20\!\cdots\!43}{24\!\cdots\!35}a^{35}-\frac{62\!\cdots\!54}{24\!\cdots\!35}a^{34}+\frac{28\!\cdots\!37}{24\!\cdots\!35}a^{33}+\frac{46\!\cdots\!59}{24\!\cdots\!35}a^{32}-\frac{16\!\cdots\!02}{24\!\cdots\!35}a^{31}+\frac{12\!\cdots\!98}{34\!\cdots\!05}a^{30}+\frac{11\!\cdots\!69}{24\!\cdots\!35}a^{29}-\frac{60\!\cdots\!72}{24\!\cdots\!35}a^{28}+\frac{21\!\cdots\!74}{24\!\cdots\!35}a^{27}-\frac{20\!\cdots\!76}{24\!\cdots\!35}a^{26}+\frac{11\!\cdots\!02}{24\!\cdots\!35}a^{25}-\frac{78\!\cdots\!62}{24\!\cdots\!35}a^{24}+\frac{26\!\cdots\!02}{24\!\cdots\!35}a^{23}-\frac{33\!\cdots\!36}{24\!\cdots\!35}a^{22}-\frac{10\!\cdots\!36}{34\!\cdots\!05}a^{21}+\frac{13\!\cdots\!01}{10\!\cdots\!29}a^{20}-\frac{54\!\cdots\!28}{22\!\cdots\!85}a^{19}+\frac{10\!\cdots\!81}{22\!\cdots\!85}a^{18}+\frac{88\!\cdots\!54}{24\!\cdots\!35}a^{17}-\frac{28\!\cdots\!58}{24\!\cdots\!35}a^{16}+\frac{11\!\cdots\!64}{24\!\cdots\!35}a^{15}-\frac{17\!\cdots\!57}{34\!\cdots\!05}a^{14}+\frac{61\!\cdots\!12}{34\!\cdots\!05}a^{13}-\frac{99\!\cdots\!87}{24\!\cdots\!35}a^{12}+\frac{27\!\cdots\!36}{24\!\cdots\!35}a^{11}-\frac{40\!\cdots\!71}{24\!\cdots\!35}a^{10}+\frac{43\!\cdots\!07}{24\!\cdots\!35}a^{9}-\frac{19\!\cdots\!68}{22\!\cdots\!85}a^{8}-\frac{46\!\cdots\!00}{48\!\cdots\!27}a^{7}+\frac{24\!\cdots\!24}{24\!\cdots\!35}a^{6}-\frac{90\!\cdots\!83}{34\!\cdots\!05}a^{5}-\frac{15\!\cdots\!37}{49\!\cdots\!15}a^{4}+\frac{23\!\cdots\!03}{34\!\cdots\!05}a^{3}+\frac{26\!\cdots\!18}{49\!\cdots\!15}a^{2}-\frac{25\!\cdots\!83}{21\!\cdots\!21}a-\frac{33\!\cdots\!24}{10\!\cdots\!05}$, $\frac{17\!\cdots\!23}{19\!\cdots\!64}a^{35}-\frac{48\!\cdots\!71}{10\!\cdots\!20}a^{34}+\frac{18\!\cdots\!43}{10\!\cdots\!20}a^{33}-\frac{18\!\cdots\!73}{27\!\cdots\!55}a^{32}-\frac{14\!\cdots\!23}{10\!\cdots\!20}a^{31}+\frac{27\!\cdots\!60}{54\!\cdots\!51}a^{30}-\frac{14\!\cdots\!17}{10\!\cdots\!02}a^{29}-\frac{45\!\cdots\!87}{10\!\cdots\!20}a^{28}+\frac{15\!\cdots\!61}{10\!\cdots\!20}a^{27}-\frac{77\!\cdots\!29}{31\!\cdots\!72}a^{26}+\frac{11\!\cdots\!63}{10\!\cdots\!20}a^{25}-\frac{37\!\cdots\!89}{10\!\cdots\!20}a^{24}+\frac{19\!\cdots\!27}{10\!\cdots\!20}a^{23}-\frac{18\!\cdots\!03}{54\!\cdots\!10}a^{22}-\frac{95\!\cdots\!17}{54\!\cdots\!10}a^{21}+\frac{46\!\cdots\!93}{21\!\cdots\!04}a^{20}-\frac{26\!\cdots\!41}{54\!\cdots\!10}a^{19}+\frac{22\!\cdots\!46}{27\!\cdots\!55}a^{18}-\frac{12\!\cdots\!46}{54\!\cdots\!51}a^{17}-\frac{14\!\cdots\!57}{54\!\cdots\!10}a^{16}+\frac{11\!\cdots\!89}{17\!\cdots\!28}a^{15}-\frac{37\!\cdots\!72}{27\!\cdots\!55}a^{14}+\frac{29\!\cdots\!67}{13\!\cdots\!40}a^{13}-\frac{20\!\cdots\!96}{27\!\cdots\!55}a^{12}+\frac{19\!\cdots\!53}{10\!\cdots\!20}a^{11}-\frac{89\!\cdots\!52}{24\!\cdots\!05}a^{10}+\frac{20\!\cdots\!96}{54\!\cdots\!51}a^{9}-\frac{13\!\cdots\!56}{54\!\cdots\!51}a^{8}-\frac{84\!\cdots\!51}{10\!\cdots\!20}a^{7}+\frac{29\!\cdots\!33}{10\!\cdots\!20}a^{6}-\frac{87\!\cdots\!01}{31\!\cdots\!72}a^{5}-\frac{31\!\cdots\!96}{39\!\cdots\!65}a^{4}+\frac{18\!\cdots\!33}{31\!\cdots\!72}a^{3}+\frac{14\!\cdots\!89}{44\!\cdots\!96}a^{2}-\frac{55\!\cdots\!25}{44\!\cdots\!96}a-\frac{49\!\cdots\!69}{43\!\cdots\!60}$, $\frac{20\!\cdots\!07}{15\!\cdots\!60}a^{35}-\frac{11\!\cdots\!47}{27\!\cdots\!55}a^{34}+\frac{10\!\cdots\!27}{54\!\cdots\!10}a^{33}+\frac{15\!\cdots\!27}{54\!\cdots\!10}a^{32}-\frac{12\!\cdots\!81}{10\!\cdots\!20}a^{31}+\frac{12\!\cdots\!19}{21\!\cdots\!04}a^{30}+\frac{19\!\cdots\!94}{27\!\cdots\!55}a^{29}-\frac{21\!\cdots\!21}{54\!\cdots\!10}a^{28}+\frac{16\!\cdots\!69}{10\!\cdots\!20}a^{27}-\frac{41\!\cdots\!41}{27\!\cdots\!55}a^{26}+\frac{64\!\cdots\!43}{78\!\cdots\!30}a^{25}-\frac{51\!\cdots\!31}{10\!\cdots\!20}a^{24}+\frac{95\!\cdots\!27}{54\!\cdots\!10}a^{23}-\frac{51\!\cdots\!69}{21\!\cdots\!04}a^{22}-\frac{48\!\cdots\!51}{10\!\cdots\!20}a^{21}+\frac{22\!\cdots\!63}{10\!\cdots\!20}a^{20}-\frac{22\!\cdots\!93}{54\!\cdots\!10}a^{19}+\frac{16\!\cdots\!37}{21\!\cdots\!04}a^{18}+\frac{57\!\cdots\!19}{10\!\cdots\!20}a^{17}-\frac{78\!\cdots\!48}{39\!\cdots\!65}a^{16}+\frac{37\!\cdots\!20}{48\!\cdots\!27}a^{15}-\frac{47\!\cdots\!91}{54\!\cdots\!10}a^{14}+\frac{62\!\cdots\!93}{21\!\cdots\!04}a^{13}-\frac{14\!\cdots\!39}{21\!\cdots\!04}a^{12}+\frac{18\!\cdots\!77}{99\!\cdots\!20}a^{11}-\frac{75\!\cdots\!74}{27\!\cdots\!55}a^{10}+\frac{32\!\cdots\!19}{10\!\cdots\!20}a^{9}-\frac{12\!\cdots\!03}{99\!\cdots\!20}a^{8}-\frac{98\!\cdots\!31}{10\!\cdots\!20}a^{7}+\frac{31\!\cdots\!77}{10\!\cdots\!20}a^{6}-\frac{24\!\cdots\!41}{15\!\cdots\!60}a^{5}+\frac{32\!\cdots\!23}{39\!\cdots\!65}a^{4}+\frac{29\!\cdots\!59}{78\!\cdots\!93}a^{3}-\frac{12\!\cdots\!65}{44\!\cdots\!96}a^{2}-\frac{76\!\cdots\!57}{11\!\cdots\!90}a+\frac{13\!\cdots\!39}{48\!\cdots\!46}$, $\frac{28\!\cdots\!79}{54\!\cdots\!10}a^{35}-\frac{18\!\cdots\!51}{10\!\cdots\!20}a^{34}+\frac{11\!\cdots\!89}{15\!\cdots\!60}a^{33}+\frac{64\!\cdots\!33}{54\!\cdots\!10}a^{32}-\frac{12\!\cdots\!21}{27\!\cdots\!55}a^{31}+\frac{25\!\cdots\!43}{10\!\cdots\!20}a^{30}+\frac{14\!\cdots\!15}{49\!\cdots\!41}a^{29}-\frac{17\!\cdots\!47}{10\!\cdots\!20}a^{28}+\frac{32\!\cdots\!49}{54\!\cdots\!10}a^{27}-\frac{63\!\cdots\!87}{10\!\cdots\!20}a^{26}+\frac{33\!\cdots\!63}{10\!\cdots\!20}a^{25}-\frac{54\!\cdots\!01}{27\!\cdots\!55}a^{24}+\frac{78\!\cdots\!13}{10\!\cdots\!20}a^{23}-\frac{10\!\cdots\!09}{10\!\cdots\!20}a^{22}-\frac{20\!\cdots\!61}{10\!\cdots\!20}a^{21}+\frac{90\!\cdots\!49}{10\!\cdots\!02}a^{20}-\frac{88\!\cdots\!61}{54\!\cdots\!10}a^{19}+\frac{32\!\cdots\!47}{10\!\cdots\!20}a^{18}+\frac{24\!\cdots\!31}{10\!\cdots\!20}a^{17}-\frac{21\!\cdots\!18}{27\!\cdots\!55}a^{16}+\frac{29\!\cdots\!97}{97\!\cdots\!40}a^{15}-\frac{18\!\cdots\!99}{54\!\cdots\!10}a^{14}+\frac{62\!\cdots\!39}{54\!\cdots\!10}a^{13}-\frac{29\!\cdots\!59}{10\!\cdots\!20}a^{12}+\frac{40\!\cdots\!87}{54\!\cdots\!10}a^{11}-\frac{59\!\cdots\!91}{54\!\cdots\!10}a^{10}+\frac{25\!\cdots\!41}{21\!\cdots\!04}a^{9}-\frac{11\!\cdots\!33}{21\!\cdots\!04}a^{8}-\frac{22\!\cdots\!74}{13\!\cdots\!15}a^{7}+\frac{22\!\cdots\!74}{27\!\cdots\!55}a^{6}-\frac{10\!\cdots\!77}{39\!\cdots\!65}a^{5}-\frac{14\!\cdots\!59}{78\!\cdots\!30}a^{4}+\frac{23\!\cdots\!47}{15\!\cdots\!60}a^{3}+\frac{20\!\cdots\!07}{56\!\cdots\!95}a^{2}+\frac{80\!\cdots\!17}{22\!\cdots\!80}a-\frac{37\!\cdots\!03}{48\!\cdots\!60}$, $\frac{88\!\cdots\!31}{78\!\cdots\!30}a^{35}-\frac{47\!\cdots\!11}{10\!\cdots\!20}a^{34}+\frac{10\!\cdots\!27}{55\!\cdots\!60}a^{33}+\frac{67\!\cdots\!13}{54\!\cdots\!10}a^{32}-\frac{40\!\cdots\!09}{39\!\cdots\!65}a^{31}+\frac{56\!\cdots\!69}{99\!\cdots\!20}a^{30}+\frac{71\!\cdots\!31}{27\!\cdots\!55}a^{29}-\frac{11\!\cdots\!97}{31\!\cdots\!72}a^{28}+\frac{82\!\cdots\!77}{54\!\cdots\!10}a^{27}-\frac{24\!\cdots\!83}{10\!\cdots\!20}a^{26}+\frac{24\!\cdots\!87}{10\!\cdots\!20}a^{25}-\frac{15\!\cdots\!08}{27\!\cdots\!55}a^{24}+\frac{20\!\cdots\!57}{10\!\cdots\!20}a^{23}-\frac{35\!\cdots\!93}{10\!\cdots\!20}a^{22}-\frac{37\!\cdots\!53}{22\!\cdots\!80}a^{21}+\frac{12\!\cdots\!03}{66\!\cdots\!70}a^{20}-\frac{26\!\cdots\!17}{54\!\cdots\!10}a^{19}+\frac{10\!\cdots\!71}{10\!\cdots\!20}a^{18}-\frac{18\!\cdots\!49}{10\!\cdots\!20}a^{17}-\frac{42\!\cdots\!37}{27\!\cdots\!55}a^{16}+\frac{14\!\cdots\!05}{19\!\cdots\!08}a^{15}-\frac{95\!\cdots\!69}{78\!\cdots\!30}a^{14}+\frac{17\!\cdots\!31}{54\!\cdots\!10}a^{13}-\frac{86\!\cdots\!51}{10\!\cdots\!20}a^{12}+\frac{11\!\cdots\!17}{54\!\cdots\!10}a^{11}-\frac{20\!\cdots\!11}{54\!\cdots\!10}a^{10}+\frac{55\!\cdots\!89}{10\!\cdots\!20}a^{9}-\frac{50\!\cdots\!01}{10\!\cdots\!20}a^{8}+\frac{74\!\cdots\!83}{27\!\cdots\!55}a^{7}+\frac{31\!\cdots\!04}{78\!\cdots\!93}a^{6}-\frac{29\!\cdots\!73}{39\!\cdots\!65}a^{5}+\frac{16\!\cdots\!69}{79\!\cdots\!38}a^{4}+\frac{42\!\cdots\!53}{22\!\cdots\!80}a^{3}-\frac{45\!\cdots\!67}{56\!\cdots\!95}a^{2}-\frac{21\!\cdots\!59}{22\!\cdots\!80}a+\frac{68\!\cdots\!87}{69\!\cdots\!80}$, $\frac{11\!\cdots\!27}{10\!\cdots\!20}a^{35}-\frac{38\!\cdots\!09}{10\!\cdots\!20}a^{34}+\frac{35\!\cdots\!33}{21\!\cdots\!04}a^{33}+\frac{10\!\cdots\!69}{54\!\cdots\!51}a^{32}-\frac{10\!\cdots\!49}{10\!\cdots\!20}a^{31}+\frac{13\!\cdots\!84}{27\!\cdots\!55}a^{30}+\frac{25\!\cdots\!81}{54\!\cdots\!10}a^{29}-\frac{35\!\cdots\!41}{10\!\cdots\!20}a^{28}+\frac{13\!\cdots\!67}{10\!\cdots\!20}a^{27}-\frac{32\!\cdots\!41}{21\!\cdots\!04}a^{26}+\frac{11\!\cdots\!97}{10\!\cdots\!20}a^{25}-\frac{45\!\cdots\!79}{10\!\cdots\!20}a^{24}+\frac{16\!\cdots\!37}{10\!\cdots\!20}a^{23}-\frac{12\!\cdots\!23}{54\!\cdots\!10}a^{22}-\frac{16\!\cdots\!93}{54\!\cdots\!10}a^{21}+\frac{18\!\cdots\!47}{10\!\cdots\!20}a^{20}-\frac{20\!\cdots\!01}{54\!\cdots\!10}a^{19}+\frac{26\!\cdots\!92}{39\!\cdots\!65}a^{18}+\frac{92\!\cdots\!01}{35\!\cdots\!15}a^{17}-\frac{24\!\cdots\!95}{15\!\cdots\!86}a^{16}+\frac{12\!\cdots\!73}{19\!\cdots\!08}a^{15}-\frac{20\!\cdots\!32}{24\!\cdots\!05}a^{14}+\frac{27\!\cdots\!63}{10\!\cdots\!20}a^{13}-\frac{29\!\cdots\!13}{49\!\cdots\!41}a^{12}+\frac{17\!\cdots\!63}{10\!\cdots\!20}a^{11}-\frac{70\!\cdots\!43}{27\!\cdots\!55}a^{10}+\frac{83\!\cdots\!94}{27\!\cdots\!55}a^{9}-\frac{50\!\cdots\!76}{27\!\cdots\!55}a^{8}+\frac{53\!\cdots\!61}{99\!\cdots\!20}a^{7}+\frac{19\!\cdots\!23}{10\!\cdots\!20}a^{6}-\frac{18\!\cdots\!79}{15\!\cdots\!60}a^{5}+\frac{28\!\cdots\!73}{80\!\cdots\!85}a^{4}+\frac{63\!\cdots\!47}{15\!\cdots\!60}a^{3}-\frac{29\!\cdots\!17}{22\!\cdots\!80}a^{2}-\frac{43\!\cdots\!39}{22\!\cdots\!80}a+\frac{83\!\cdots\!83}{48\!\cdots\!60}$, $\frac{23\!\cdots\!39}{10\!\cdots\!20}a^{35}-\frac{97\!\cdots\!75}{21\!\cdots\!04}a^{34}+\frac{27\!\cdots\!59}{10\!\cdots\!20}a^{33}+\frac{21\!\cdots\!49}{27\!\cdots\!55}a^{32}-\frac{23\!\cdots\!09}{21\!\cdots\!04}a^{31}+\frac{88\!\cdots\!01}{11\!\cdots\!90}a^{30}+\frac{11\!\cdots\!57}{54\!\cdots\!10}a^{29}-\frac{71\!\cdots\!89}{15\!\cdots\!60}a^{28}+\frac{19\!\cdots\!03}{10\!\cdots\!20}a^{27}-\frac{19\!\cdots\!99}{10\!\cdots\!20}a^{26}+\frac{15\!\cdots\!67}{10\!\cdots\!20}a^{25}-\frac{83\!\cdots\!47}{10\!\cdots\!20}a^{24}+\frac{44\!\cdots\!31}{21\!\cdots\!04}a^{23}-\frac{28\!\cdots\!19}{24\!\cdots\!05}a^{22}-\frac{26\!\cdots\!56}{27\!\cdots\!55}a^{21}+\frac{25\!\cdots\!03}{10\!\cdots\!20}a^{20}-\frac{19\!\cdots\!57}{54\!\cdots\!10}a^{19}+\frac{34\!\cdots\!79}{49\!\cdots\!10}a^{18}+\frac{14\!\cdots\!99}{78\!\cdots\!30}a^{17}-\frac{83\!\cdots\!43}{54\!\cdots\!10}a^{16}+\frac{96\!\cdots\!19}{97\!\cdots\!40}a^{15}-\frac{89\!\cdots\!76}{54\!\cdots\!51}a^{14}+\frac{61\!\cdots\!37}{15\!\cdots\!60}a^{13}-\frac{31\!\cdots\!63}{49\!\cdots\!10}a^{12}+\frac{23\!\cdots\!07}{10\!\cdots\!20}a^{11}-\frac{49\!\cdots\!54}{27\!\cdots\!55}a^{10}+\frac{95\!\cdots\!99}{54\!\cdots\!10}a^{9}+\frac{60\!\cdots\!07}{71\!\cdots\!30}a^{8}-\frac{10\!\cdots\!37}{10\!\cdots\!20}a^{7}+\frac{24\!\cdots\!59}{10\!\cdots\!20}a^{6}+\frac{27\!\cdots\!53}{15\!\cdots\!60}a^{5}-\frac{27\!\cdots\!43}{39\!\cdots\!65}a^{4}+\frac{57\!\cdots\!41}{15\!\cdots\!60}a^{3}+\frac{13\!\cdots\!55}{44\!\cdots\!96}a^{2}+\frac{31\!\cdots\!03}{22\!\cdots\!80}a+\frac{15\!\cdots\!89}{96\!\cdots\!92}$, $\frac{66\!\cdots\!87}{15\!\cdots\!60}a^{35}-\frac{81\!\cdots\!17}{78\!\cdots\!30}a^{34}+\frac{16\!\cdots\!91}{31\!\cdots\!72}a^{33}+\frac{77\!\cdots\!64}{56\!\cdots\!95}a^{32}-\frac{63\!\cdots\!09}{22\!\cdots\!80}a^{31}+\frac{25\!\cdots\!29}{15\!\cdots\!60}a^{30}+\frac{11\!\cdots\!57}{31\!\cdots\!72}a^{29}-\frac{17\!\cdots\!73}{15\!\cdots\!60}a^{28}+\frac{60\!\cdots\!83}{15\!\cdots\!60}a^{27}-\frac{15\!\cdots\!57}{11\!\cdots\!90}a^{26}-\frac{70\!\cdots\!69}{15\!\cdots\!60}a^{25}-\frac{44\!\cdots\!71}{31\!\cdots\!72}a^{24}+\frac{25\!\cdots\!31}{56\!\cdots\!95}a^{23}-\frac{27\!\cdots\!87}{78\!\cdots\!30}a^{22}-\frac{30\!\cdots\!59}{15\!\cdots\!60}a^{21}+\frac{30\!\cdots\!37}{56\!\cdots\!95}a^{20}-\frac{26\!\cdots\!73}{31\!\cdots\!72}a^{19}+\frac{16\!\cdots\!99}{11\!\cdots\!90}a^{18}+\frac{54\!\cdots\!37}{15\!\cdots\!60}a^{17}-\frac{75\!\cdots\!99}{15\!\cdots\!60}a^{16}+\frac{28\!\cdots\!77}{13\!\cdots\!20}a^{15}-\frac{93\!\cdots\!81}{10\!\cdots\!90}a^{14}+\frac{11\!\cdots\!53}{15\!\cdots\!60}a^{13}-\frac{23\!\cdots\!73}{15\!\cdots\!60}a^{12}+\frac{25\!\cdots\!31}{56\!\cdots\!95}a^{11}-\frac{20\!\cdots\!09}{44\!\cdots\!96}a^{10}+\frac{20\!\cdots\!92}{56\!\cdots\!95}a^{9}+\frac{70\!\cdots\!23}{32\!\cdots\!40}a^{8}-\frac{31\!\cdots\!99}{71\!\cdots\!30}a^{7}+\frac{49\!\cdots\!61}{78\!\cdots\!30}a^{6}+\frac{13\!\cdots\!89}{78\!\cdots\!30}a^{5}-\frac{51\!\cdots\!59}{22\!\cdots\!80}a^{4}+\frac{11\!\cdots\!03}{22\!\cdots\!80}a^{3}+\frac{18\!\cdots\!19}{22\!\cdots\!80}a^{2}-\frac{72\!\cdots\!27}{14\!\cdots\!70}a-\frac{16\!\cdots\!85}{13\!\cdots\!56}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 24305501107073070 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 24305501107073070 \cdot 2916}{6\cdot\sqrt{17105807243512371509230217076280919792582365736923687236157265974689}}\cr\approx \mathstrut & 0.665283407607076 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 + 14*x^34 + 25*x^33 - 81*x^32 + 430*x^31 + 649*x^30 - 2959*x^29 + 10672*x^28 - 9183*x^27 + 3994*x^26 - 36672*x^25 + 129037*x^24 - 153463*x^23 - 377431*x^22 + 1507640*x^21 - 2832566*x^20 + 5098422*x^19 + 5245819*x^18 - 14119627*x^17 + 55722175*x^16 - 52547145*x^15 + 205342047*x^14 - 466686704*x^13 + 1314989350*x^12 - 1838473868*x^11 + 1895355654*x^10 - 622211603*x^9 - 531048524*x^8 + 1533170167*x^7 - 241708081*x^6 - 506053254*x^5 + 309479289*x^4 + 94941336*x^3 - 65292451*x^2 - 8212694*x + 10504081);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6^2$ (as 36T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_6^2$
Character table for $C_6^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{57}) \), \(\Q(\sqrt{-19}) \), 3.3.17689.1, \(\Q(\zeta_{7})^+\), 3.3.361.1, 3.3.17689.2, \(\Q(\sqrt{-3}, \sqrt{-19})\), 6.0.8448319467.2, 6.0.64827.1, 6.0.3518667.1, 6.0.8448319467.1, 6.6.160518069873.2, 6.0.5945113699.1, 6.6.444648393.1, 6.0.16468459.1, 6.6.66854673.1, 6.0.2476099.1, 6.6.160518069873.1, 6.0.5945113699.2, 9.9.5534900853769.1, 12.0.25766050755753310236129.1, 12.0.197712193397482449.1, 12.0.4469547301936929.1, 12.0.25766050755753310236129.2, 18.0.602991213815902363206590020563.2, 18.18.4135916735563274309234000951041617.1, 18.0.210126339255361190328405271099.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{6}$ R ${\href{/padicField/5.6.0.1}{6} }^{6}$ R ${\href{/padicField/11.6.0.1}{6} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{6}$ R ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.3.0.1}{3} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.3.2.2$x^{3} + 7$$3$$1$$2$$C_3$$[\ ]_{3}$
\(19\) Copy content Toggle raw display 19.18.15.5$x^{18} + 24 x^{16} + 102 x^{15} + 240 x^{14} + 2040 x^{13} + 5672 x^{12} + 16320 x^{11} + 71376 x^{10} + 115090 x^{9} + 435984 x^{8} + 1425960 x^{7} + 4712335 x^{6} + 4448832 x^{5} + 13138680 x^{4} + 553792 x^{3} + 24288576 x^{2} + 23882688 x + 31358272$$6$$3$$15$$C_6 \times C_3$$[\ ]_{6}^{3}$
19.18.15.5$x^{18} + 24 x^{16} + 102 x^{15} + 240 x^{14} + 2040 x^{13} + 5672 x^{12} + 16320 x^{11} + 71376 x^{10} + 115090 x^{9} + 435984 x^{8} + 1425960 x^{7} + 4712335 x^{6} + 4448832 x^{5} + 13138680 x^{4} + 553792 x^{3} + 24288576 x^{2} + 23882688 x + 31358272$$6$$3$$15$$C_6 \times C_3$$[\ ]_{6}^{3}$