Properties

Label 34.0.265...823.1
Degree $34$
Signature $[0, 17]$
Discriminant $-2.652\times 10^{66}$
Root discriminant \(89.87\)
Ramified prime $103$
Class number $5105$ (GRH)
Class group [5105] (GRH)
Galois group $C_{34}$ (as 34T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857)
 
gp: K = bnfinit(y^34 - y^33 + 2*y^32 + 64*y^31 - 57*y^30 + 107*y^29 + 1603*y^28 - 1261*y^27 + 2206*y^26 + 20286*y^25 - 13891*y^24 + 22349*y^23 + 140429*y^22 - 82189*y^21 + 120996*y^20 + 538574*y^19 - 264119*y^18 + 327327*y^17 + 1143572*y^16 - 499882*y^15 + 128724*y^14 + 1425880*y^13 - 737516*y^12 - 1133952*y^11 + 1294431*y^10 - 1061173*y^9 - 1305757*y^8 + 907693*y^7 - 16051*y^6 - 713165*y^5 + 590348*y^4 + 474529*y^3 + 129602*y^2 - 93135*y + 56857, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857)
 

\( x^{34} - x^{33} + 2 x^{32} + 64 x^{31} - 57 x^{30} + 107 x^{29} + 1603 x^{28} - 1261 x^{27} + \cdots + 56857 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $34$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 17]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-2652335238355663972863781109929452800183143879582476922663961790823\) \(\medspace = -\,103^{33}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(89.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $103^{33/34}\approx 89.87442603411633$
Ramified primes:   \(103\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-103}) \)
$\card{ \Gal(K/\Q) }$:  $34$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(103\)
Dirichlet character group:    $\lbrace$$\chi_{103}(1,·)$, $\chi_{103}(3,·)$, $\chi_{103}(8,·)$, $\chi_{103}(9,·)$, $\chi_{103}(10,·)$, $\chi_{103}(13,·)$, $\chi_{103}(14,·)$, $\chi_{103}(22,·)$, $\chi_{103}(23,·)$, $\chi_{103}(24,·)$, $\chi_{103}(27,·)$, $\chi_{103}(30,·)$, $\chi_{103}(31,·)$, $\chi_{103}(34,·)$, $\chi_{103}(37,·)$, $\chi_{103}(39,·)$, $\chi_{103}(42,·)$, $\chi_{103}(61,·)$, $\chi_{103}(64,·)$, $\chi_{103}(66,·)$, $\chi_{103}(69,·)$, $\chi_{103}(72,·)$, $\chi_{103}(73,·)$, $\chi_{103}(76,·)$, $\chi_{103}(79,·)$, $\chi_{103}(80,·)$, $\chi_{103}(81,·)$, $\chi_{103}(89,·)$, $\chi_{103}(90,·)$, $\chi_{103}(93,·)$, $\chi_{103}(94,·)$, $\chi_{103}(95,·)$, $\chi_{103}(100,·)$, $\chi_{103}(102,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{65536}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{149}a^{30}+\frac{34}{149}a^{29}+\frac{52}{149}a^{28}-\frac{30}{149}a^{27}-\frac{69}{149}a^{26}+\frac{41}{149}a^{25}-\frac{40}{149}a^{23}-\frac{33}{149}a^{22}-\frac{43}{149}a^{21}-\frac{58}{149}a^{20}-\frac{64}{149}a^{19}-\frac{64}{149}a^{18}-\frac{21}{149}a^{16}-\frac{36}{149}a^{15}+\frac{26}{149}a^{14}+\frac{46}{149}a^{13}+\frac{49}{149}a^{12}-\frac{13}{149}a^{11}+\frac{62}{149}a^{10}+\frac{21}{149}a^{9}+\frac{56}{149}a^{8}-\frac{19}{149}a^{7}+\frac{2}{149}a^{6}+\frac{26}{149}a^{5}+\frac{34}{149}a^{4}+\frac{61}{149}a^{3}-\frac{2}{149}a^{2}+\frac{69}{149}a+\frac{61}{149}$, $\frac{1}{149}a^{31}-\frac{61}{149}a^{29}-\frac{10}{149}a^{28}+\frac{57}{149}a^{27}+\frac{3}{149}a^{26}-\frac{53}{149}a^{25}-\frac{40}{149}a^{24}-\frac{14}{149}a^{23}+\frac{36}{149}a^{22}+\frac{63}{149}a^{21}-\frac{29}{149}a^{20}+\frac{26}{149}a^{19}-\frac{59}{149}a^{18}-\frac{21}{149}a^{17}-\frac{67}{149}a^{16}+\frac{58}{149}a^{15}+\frac{56}{149}a^{14}-\frac{25}{149}a^{13}-\frac{40}{149}a^{12}+\frac{57}{149}a^{11}-\frac{1}{149}a^{10}-\frac{62}{149}a^{9}+\frac{14}{149}a^{8}+\frac{52}{149}a^{7}-\frac{42}{149}a^{6}+\frac{44}{149}a^{5}-\frac{52}{149}a^{4}+\frac{10}{149}a^{3}-\frac{12}{149}a^{2}-\frac{50}{149}a+\frac{12}{149}$, $\frac{1}{92231}a^{32}-\frac{309}{92231}a^{31}+\frac{136}{92231}a^{30}+\frac{10935}{92231}a^{29}+\frac{44681}{92231}a^{28}-\frac{41698}{92231}a^{27}+\frac{6883}{92231}a^{26}+\frac{36185}{92231}a^{25}+\frac{44679}{92231}a^{24}-\frac{33914}{92231}a^{23}-\frac{35889}{92231}a^{22}+\frac{23885}{92231}a^{21}+\frac{37940}{92231}a^{20}-\frac{586}{92231}a^{19}-\frac{41929}{92231}a^{18}+\frac{3293}{92231}a^{17}+\frac{28246}{92231}a^{16}+\frac{44178}{92231}a^{15}+\frac{1501}{92231}a^{14}-\frac{28400}{92231}a^{13}-\frac{35593}{92231}a^{12}-\frac{4828}{92231}a^{11}-\frac{39242}{92231}a^{10}+\frac{38805}{92231}a^{9}+\frac{30151}{92231}a^{8}+\frac{32744}{92231}a^{7}+\frac{9989}{92231}a^{6}-\frac{1374}{92231}a^{5}-\frac{33248}{92231}a^{4}+\frac{14875}{92231}a^{3}-\frac{29665}{92231}a^{2}-\frac{141}{619}a+\frac{9799}{92231}$, $\frac{1}{67\!\cdots\!63}a^{33}+\frac{33\!\cdots\!83}{67\!\cdots\!63}a^{32}+\frac{48\!\cdots\!20}{67\!\cdots\!63}a^{31}+\frac{60\!\cdots\!56}{67\!\cdots\!63}a^{30}+\frac{19\!\cdots\!07}{67\!\cdots\!63}a^{29}+\frac{45\!\cdots\!98}{67\!\cdots\!63}a^{28}-\frac{22\!\cdots\!38}{67\!\cdots\!63}a^{27}-\frac{39\!\cdots\!03}{67\!\cdots\!63}a^{26}+\frac{31\!\cdots\!34}{67\!\cdots\!63}a^{25}+\frac{27\!\cdots\!58}{67\!\cdots\!63}a^{24}-\frac{47\!\cdots\!02}{67\!\cdots\!63}a^{23}+\frac{20\!\cdots\!83}{67\!\cdots\!63}a^{22}-\frac{28\!\cdots\!89}{67\!\cdots\!63}a^{21}-\frac{54\!\cdots\!03}{67\!\cdots\!63}a^{20}-\frac{14\!\cdots\!34}{67\!\cdots\!63}a^{19}-\frac{21\!\cdots\!46}{67\!\cdots\!63}a^{18}+\frac{10\!\cdots\!20}{67\!\cdots\!63}a^{17}+\frac{21\!\cdots\!46}{67\!\cdots\!63}a^{16}-\frac{33\!\cdots\!46}{67\!\cdots\!63}a^{15}-\frac{24\!\cdots\!98}{67\!\cdots\!63}a^{14}-\frac{14\!\cdots\!90}{67\!\cdots\!63}a^{13}-\frac{89\!\cdots\!88}{67\!\cdots\!63}a^{12}-\frac{18\!\cdots\!39}{67\!\cdots\!63}a^{11}+\frac{33\!\cdots\!57}{67\!\cdots\!63}a^{10}+\frac{17\!\cdots\!23}{67\!\cdots\!63}a^{9}+\frac{19\!\cdots\!54}{67\!\cdots\!63}a^{8}+\frac{16\!\cdots\!73}{67\!\cdots\!63}a^{7}+\frac{26\!\cdots\!85}{67\!\cdots\!63}a^{6}-\frac{28\!\cdots\!17}{67\!\cdots\!63}a^{5}-\frac{33\!\cdots\!23}{67\!\cdots\!63}a^{4}-\frac{44\!\cdots\!81}{67\!\cdots\!63}a^{3}-\frac{20\!\cdots\!60}{67\!\cdots\!63}a^{2}-\frac{62\!\cdots\!62}{67\!\cdots\!63}a-\frac{67\!\cdots\!05}{11\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{5105}$, which has order $5105$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $16$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{40\!\cdots\!46}{67\!\cdots\!63}a^{33}-\frac{68\!\cdots\!00}{67\!\cdots\!63}a^{32}+\frac{10\!\cdots\!07}{67\!\cdots\!63}a^{31}+\frac{25\!\cdots\!66}{67\!\cdots\!63}a^{30}-\frac{40\!\cdots\!08}{67\!\cdots\!63}a^{29}+\frac{59\!\cdots\!44}{67\!\cdots\!63}a^{28}+\frac{61\!\cdots\!11}{67\!\cdots\!63}a^{27}-\frac{95\!\cdots\!18}{67\!\cdots\!63}a^{26}+\frac{12\!\cdots\!72}{67\!\cdots\!63}a^{25}+\frac{74\!\cdots\!18}{67\!\cdots\!63}a^{24}-\frac{11\!\cdots\!49}{67\!\cdots\!63}a^{23}+\frac{12\!\cdots\!06}{67\!\cdots\!63}a^{22}+\frac{49\!\cdots\!54}{67\!\cdots\!63}a^{21}-\frac{71\!\cdots\!73}{67\!\cdots\!63}a^{20}+\frac{68\!\cdots\!44}{67\!\cdots\!63}a^{19}+\frac{17\!\cdots\!66}{67\!\cdots\!63}a^{18}-\frac{25\!\cdots\!52}{67\!\cdots\!63}a^{17}+\frac{18\!\cdots\!53}{67\!\cdots\!63}a^{16}+\frac{33\!\cdots\!59}{67\!\cdots\!63}a^{15}-\frac{50\!\cdots\!60}{67\!\cdots\!63}a^{14}+\frac{10\!\cdots\!30}{67\!\cdots\!63}a^{13}+\frac{48\!\cdots\!76}{67\!\cdots\!63}a^{12}-\frac{68\!\cdots\!91}{67\!\cdots\!63}a^{11}-\frac{39\!\cdots\!62}{67\!\cdots\!63}a^{10}+\frac{81\!\cdots\!47}{67\!\cdots\!63}a^{9}-\frac{78\!\cdots\!01}{67\!\cdots\!63}a^{8}-\frac{29\!\cdots\!95}{67\!\cdots\!63}a^{7}+\frac{74\!\cdots\!05}{67\!\cdots\!63}a^{6}-\frac{11\!\cdots\!47}{67\!\cdots\!63}a^{5}-\frac{24\!\cdots\!76}{67\!\cdots\!63}a^{4}+\frac{53\!\cdots\!46}{67\!\cdots\!63}a^{3}+\frac{22\!\cdots\!45}{67\!\cdots\!63}a^{2}-\frac{14\!\cdots\!90}{67\!\cdots\!63}a+\frac{13\!\cdots\!89}{11\!\cdots\!59}$, $\frac{67\!\cdots\!93}{67\!\cdots\!63}a^{33}-\frac{67\!\cdots\!26}{67\!\cdots\!63}a^{32}+\frac{10\!\cdots\!63}{67\!\cdots\!63}a^{31}+\frac{43\!\cdots\!42}{67\!\cdots\!63}a^{30}-\frac{39\!\cdots\!24}{67\!\cdots\!63}a^{29}+\frac{56\!\cdots\!58}{67\!\cdots\!63}a^{28}+\frac{11\!\cdots\!66}{67\!\cdots\!63}a^{27}-\frac{88\!\cdots\!29}{67\!\cdots\!63}a^{26}+\frac{11\!\cdots\!43}{67\!\cdots\!63}a^{25}+\frac{14\!\cdots\!85}{67\!\cdots\!63}a^{24}-\frac{10\!\cdots\!57}{67\!\cdots\!63}a^{23}+\frac{10\!\cdots\!68}{67\!\cdots\!63}a^{22}+\frac{10\!\cdots\!45}{67\!\cdots\!63}a^{21}-\frac{64\!\cdots\!25}{67\!\cdots\!63}a^{20}+\frac{52\!\cdots\!97}{67\!\cdots\!63}a^{19}+\frac{41\!\cdots\!41}{67\!\cdots\!63}a^{18}-\frac{23\!\cdots\!96}{67\!\cdots\!63}a^{17}+\frac{12\!\cdots\!77}{67\!\cdots\!63}a^{16}+\frac{95\!\cdots\!73}{67\!\cdots\!63}a^{15}-\frac{51\!\cdots\!41}{67\!\cdots\!63}a^{14}-\frac{93\!\cdots\!60}{67\!\cdots\!63}a^{13}+\frac{13\!\cdots\!75}{67\!\cdots\!63}a^{12}-\frac{74\!\cdots\!24}{67\!\cdots\!63}a^{11}-\frac{10\!\cdots\!83}{67\!\cdots\!63}a^{10}+\frac{13\!\cdots\!98}{67\!\cdots\!63}a^{9}-\frac{74\!\cdots\!83}{67\!\cdots\!63}a^{8}-\frac{13\!\cdots\!20}{67\!\cdots\!63}a^{7}+\frac{12\!\cdots\!75}{67\!\cdots\!63}a^{6}-\frac{71\!\cdots\!37}{67\!\cdots\!63}a^{5}-\frac{92\!\cdots\!68}{67\!\cdots\!63}a^{4}+\frac{77\!\cdots\!93}{67\!\cdots\!63}a^{3}+\frac{34\!\cdots\!26}{67\!\cdots\!63}a^{2}-\frac{23\!\cdots\!42}{67\!\cdots\!63}a+\frac{17\!\cdots\!93}{11\!\cdots\!59}$, $\frac{10\!\cdots\!15}{67\!\cdots\!63}a^{33}-\frac{30\!\cdots\!14}{67\!\cdots\!63}a^{32}+\frac{69\!\cdots\!75}{67\!\cdots\!63}a^{31}+\frac{57\!\cdots\!62}{67\!\cdots\!63}a^{30}-\frac{17\!\cdots\!24}{67\!\cdots\!63}a^{29}+\frac{40\!\cdots\!02}{67\!\cdots\!63}a^{28}+\frac{11\!\cdots\!68}{67\!\cdots\!63}a^{27}-\frac{40\!\cdots\!39}{67\!\cdots\!63}a^{26}+\frac{92\!\cdots\!65}{67\!\cdots\!63}a^{25}+\frac{10\!\cdots\!65}{67\!\cdots\!63}a^{24}-\frac{45\!\cdots\!95}{67\!\cdots\!63}a^{23}+\frac{10\!\cdots\!87}{67\!\cdots\!63}a^{22}+\frac{35\!\cdots\!33}{67\!\cdots\!63}a^{21}-\frac{25\!\cdots\!33}{67\!\cdots\!63}a^{20}+\frac{64\!\cdots\!43}{67\!\cdots\!63}a^{19}-\frac{81\!\cdots\!36}{67\!\cdots\!63}a^{18}-\frac{71\!\cdots\!15}{67\!\cdots\!63}a^{17}+\frac{20\!\cdots\!27}{67\!\cdots\!63}a^{16}-\frac{77\!\cdots\!59}{67\!\cdots\!63}a^{15}-\frac{79\!\cdots\!14}{67\!\cdots\!63}a^{14}+\frac{33\!\cdots\!46}{67\!\cdots\!63}a^{13}-\frac{12\!\cdots\!59}{67\!\cdots\!63}a^{12}-\frac{91\!\cdots\!09}{67\!\cdots\!63}a^{11}+\frac{27\!\cdots\!67}{67\!\cdots\!63}a^{10}+\frac{64\!\cdots\!52}{67\!\cdots\!63}a^{9}-\frac{37\!\cdots\!92}{67\!\cdots\!63}a^{8}+\frac{41\!\cdots\!14}{67\!\cdots\!63}a^{7}-\frac{25\!\cdots\!53}{67\!\cdots\!63}a^{6}-\frac{17\!\cdots\!62}{67\!\cdots\!63}a^{5}+\frac{18\!\cdots\!52}{67\!\cdots\!63}a^{4}-\frac{14\!\cdots\!41}{67\!\cdots\!63}a^{3}-\frac{47\!\cdots\!65}{67\!\cdots\!63}a^{2}+\frac{32\!\cdots\!44}{67\!\cdots\!63}a+\frac{18\!\cdots\!61}{11\!\cdots\!59}$, $\frac{25\!\cdots\!71}{67\!\cdots\!63}a^{33}-\frac{49\!\cdots\!46}{67\!\cdots\!63}a^{32}+\frac{80\!\cdots\!06}{67\!\cdots\!63}a^{31}+\frac{15\!\cdots\!98}{67\!\cdots\!63}a^{30}-\frac{29\!\cdots\!86}{67\!\cdots\!63}a^{29}+\frac{44\!\cdots\!24}{67\!\cdots\!63}a^{28}+\frac{37\!\cdots\!88}{67\!\cdots\!63}a^{27}-\frac{67\!\cdots\!38}{67\!\cdots\!63}a^{26}+\frac{93\!\cdots\!71}{67\!\cdots\!63}a^{25}+\frac{43\!\cdots\!96}{67\!\cdots\!63}a^{24}-\frac{77\!\cdots\!78}{67\!\cdots\!63}a^{23}+\frac{96\!\cdots\!06}{67\!\cdots\!63}a^{22}+\frac{26\!\cdots\!70}{67\!\cdots\!63}a^{21}-\frac{47\!\cdots\!18}{67\!\cdots\!63}a^{20}+\frac{53\!\cdots\!22}{67\!\cdots\!63}a^{19}+\frac{77\!\cdots\!73}{67\!\cdots\!63}a^{18}-\frac{15\!\cdots\!05}{67\!\cdots\!63}a^{17}+\frac{14\!\cdots\!43}{67\!\cdots\!63}a^{16}+\frac{96\!\cdots\!77}{67\!\cdots\!63}a^{15}-\frac{26\!\cdots\!75}{67\!\cdots\!63}a^{14}+\frac{13\!\cdots\!49}{67\!\cdots\!63}a^{13}+\frac{97\!\cdots\!23}{67\!\cdots\!63}a^{12}-\frac{31\!\cdots\!60}{67\!\cdots\!63}a^{11}-\frac{86\!\cdots\!75}{67\!\cdots\!63}a^{10}+\frac{31\!\cdots\!39}{67\!\cdots\!63}a^{9}-\frac{42\!\cdots\!95}{67\!\cdots\!63}a^{8}+\frac{17\!\cdots\!36}{67\!\cdots\!63}a^{7}+\frac{19\!\cdots\!89}{67\!\cdots\!63}a^{6}-\frac{57\!\cdots\!07}{67\!\cdots\!63}a^{5}+\frac{55\!\cdots\!77}{67\!\cdots\!63}a^{4}+\frac{60\!\cdots\!79}{67\!\cdots\!63}a^{3}+\frac{41\!\cdots\!11}{67\!\cdots\!63}a^{2}-\frac{23\!\cdots\!01}{67\!\cdots\!63}a+\frac{23\!\cdots\!98}{11\!\cdots\!59}$, $\frac{60\!\cdots\!98}{67\!\cdots\!63}a^{33}-\frac{10\!\cdots\!30}{67\!\cdots\!63}a^{32}+\frac{13\!\cdots\!79}{67\!\cdots\!63}a^{31}+\frac{38\!\cdots\!87}{67\!\cdots\!63}a^{30}-\frac{61\!\cdots\!67}{67\!\cdots\!63}a^{29}+\frac{72\!\cdots\!33}{67\!\cdots\!63}a^{28}+\frac{93\!\cdots\!75}{67\!\cdots\!63}a^{27}-\frac{14\!\cdots\!55}{67\!\cdots\!63}a^{26}+\frac{14\!\cdots\!75}{67\!\cdots\!63}a^{25}+\frac{11\!\cdots\!72}{67\!\cdots\!63}a^{24}-\frac{17\!\cdots\!26}{67\!\cdots\!63}a^{23}+\frac{14\!\cdots\!18}{67\!\cdots\!63}a^{22}+\frac{76\!\cdots\!14}{67\!\cdots\!63}a^{21}-\frac{11\!\cdots\!93}{67\!\cdots\!63}a^{20}+\frac{70\!\cdots\!91}{67\!\cdots\!63}a^{19}+\frac{27\!\cdots\!60}{67\!\cdots\!63}a^{18}-\frac{39\!\cdots\!23}{67\!\cdots\!63}a^{17}+\frac{15\!\cdots\!38}{67\!\cdots\!63}a^{16}+\frac{53\!\cdots\!61}{67\!\cdots\!63}a^{15}-\frac{81\!\cdots\!58}{67\!\cdots\!63}a^{14}-\frac{46\!\cdots\!24}{67\!\cdots\!63}a^{13}+\frac{76\!\cdots\!39}{67\!\cdots\!63}a^{12}-\frac{98\!\cdots\!43}{67\!\cdots\!63}a^{11}-\frac{75\!\cdots\!64}{67\!\cdots\!63}a^{10}+\frac{12\!\cdots\!53}{67\!\cdots\!63}a^{9}-\frac{77\!\cdots\!31}{67\!\cdots\!63}a^{8}-\frac{49\!\cdots\!11}{67\!\cdots\!63}a^{7}+\frac{11\!\cdots\!48}{67\!\cdots\!63}a^{6}+\frac{10\!\cdots\!08}{67\!\cdots\!63}a^{5}-\frac{46\!\cdots\!05}{67\!\cdots\!63}a^{4}+\frac{50\!\cdots\!60}{67\!\cdots\!63}a^{3}+\frac{24\!\cdots\!03}{67\!\cdots\!63}a^{2}-\frac{15\!\cdots\!33}{67\!\cdots\!63}a-\frac{59\!\cdots\!38}{11\!\cdots\!59}$, $\frac{29\!\cdots\!23}{67\!\cdots\!63}a^{33}-\frac{13\!\cdots\!15}{67\!\cdots\!63}a^{32}-\frac{15\!\cdots\!68}{67\!\cdots\!63}a^{31}+\frac{19\!\cdots\!81}{67\!\cdots\!63}a^{30}-\frac{77\!\cdots\!61}{67\!\cdots\!63}a^{29}-\frac{14\!\cdots\!95}{67\!\cdots\!63}a^{28}+\frac{49\!\cdots\!28}{67\!\cdots\!63}a^{27}-\frac{17\!\cdots\!61}{67\!\cdots\!63}a^{26}-\frac{47\!\cdots\!48}{67\!\cdots\!63}a^{25}+\frac{65\!\cdots\!23}{67\!\cdots\!63}a^{24}-\frac{20\!\cdots\!31}{67\!\cdots\!63}a^{23}-\frac{70\!\cdots\!75}{67\!\cdots\!63}a^{22}+\frac{46\!\cdots\!69}{67\!\cdots\!63}a^{21}-\frac{13\!\cdots\!62}{67\!\cdots\!63}a^{20}-\frac{52\!\cdots\!46}{67\!\cdots\!63}a^{19}+\frac{18\!\cdots\!17}{67\!\cdots\!63}a^{18}-\frac{53\!\cdots\!30}{67\!\cdots\!63}a^{17}-\frac{20\!\cdots\!36}{67\!\cdots\!63}a^{16}+\frac{41\!\cdots\!93}{67\!\cdots\!63}a^{15}-\frac{11\!\cdots\!93}{67\!\cdots\!63}a^{14}-\frac{48\!\cdots\!47}{67\!\cdots\!63}a^{13}+\frac{49\!\cdots\!50}{67\!\cdots\!63}a^{12}+\frac{56\!\cdots\!89}{67\!\cdots\!63}a^{11}-\frac{71\!\cdots\!07}{67\!\cdots\!63}a^{10}+\frac{37\!\cdots\!18}{67\!\cdots\!63}a^{9}+\frac{64\!\cdots\!61}{67\!\cdots\!63}a^{8}-\frac{55\!\cdots\!17}{67\!\cdots\!63}a^{7}+\frac{36\!\cdots\!77}{67\!\cdots\!63}a^{6}+\frac{50\!\cdots\!72}{67\!\cdots\!63}a^{5}-\frac{52\!\cdots\!06}{67\!\cdots\!63}a^{4}-\frac{46\!\cdots\!99}{67\!\cdots\!63}a^{3}-\frac{10\!\cdots\!73}{67\!\cdots\!63}a^{2}+\frac{80\!\cdots\!09}{67\!\cdots\!63}a-\frac{23\!\cdots\!56}{11\!\cdots\!59}$, $\frac{22\!\cdots\!25}{67\!\cdots\!63}a^{33}-\frac{60\!\cdots\!30}{67\!\cdots\!63}a^{32}+\frac{13\!\cdots\!38}{67\!\cdots\!63}a^{31}+\frac{12\!\cdots\!96}{67\!\cdots\!63}a^{30}-\frac{35\!\cdots\!37}{67\!\cdots\!63}a^{29}+\frac{78\!\cdots\!84}{67\!\cdots\!63}a^{28}+\frac{27\!\cdots\!58}{67\!\cdots\!63}a^{27}-\frac{80\!\cdots\!09}{67\!\cdots\!63}a^{26}+\frac{17\!\cdots\!55}{67\!\cdots\!63}a^{25}+\frac{25\!\cdots\!54}{67\!\cdots\!63}a^{24}-\frac{88\!\cdots\!93}{67\!\cdots\!63}a^{23}+\frac{19\!\cdots\!22}{67\!\cdots\!63}a^{22}+\frac{88\!\cdots\!94}{67\!\cdots\!63}a^{21}-\frac{50\!\cdots\!60}{67\!\cdots\!63}a^{20}+\frac{12\!\cdots\!01}{67\!\cdots\!63}a^{19}-\frac{15\!\cdots\!24}{67\!\cdots\!63}a^{18}-\frac{14\!\cdots\!23}{67\!\cdots\!63}a^{17}+\frac{39\!\cdots\!77}{67\!\cdots\!63}a^{16}-\frac{17\!\cdots\!03}{67\!\cdots\!63}a^{15}-\frac{16\!\cdots\!29}{67\!\cdots\!63}a^{14}+\frac{60\!\cdots\!42}{67\!\cdots\!63}a^{13}-\frac{29\!\cdots\!89}{67\!\cdots\!63}a^{12}-\frac{21\!\cdots\!08}{67\!\cdots\!63}a^{11}+\frac{49\!\cdots\!78}{67\!\cdots\!63}a^{10}-\frac{35\!\cdots\!99}{67\!\cdots\!63}a^{9}-\frac{80\!\cdots\!94}{67\!\cdots\!63}a^{8}+\frac{86\!\cdots\!96}{67\!\cdots\!63}a^{7}-\frac{39\!\cdots\!34}{67\!\cdots\!63}a^{6}-\frac{36\!\cdots\!37}{67\!\cdots\!63}a^{5}+\frac{40\!\cdots\!00}{67\!\cdots\!63}a^{4}-\frac{13\!\cdots\!13}{67\!\cdots\!63}a^{3}-\frac{46\!\cdots\!96}{67\!\cdots\!63}a^{2}+\frac{32\!\cdots\!00}{67\!\cdots\!63}a+\frac{21\!\cdots\!43}{11\!\cdots\!59}$, $\frac{18\!\cdots\!16}{67\!\cdots\!63}a^{33}-\frac{45\!\cdots\!42}{67\!\cdots\!63}a^{32}+\frac{49\!\cdots\!10}{67\!\cdots\!63}a^{31}+\frac{11\!\cdots\!33}{67\!\cdots\!63}a^{30}-\frac{28\!\cdots\!59}{67\!\cdots\!63}a^{29}+\frac{26\!\cdots\!31}{67\!\cdots\!63}a^{28}+\frac{27\!\cdots\!77}{67\!\cdots\!63}a^{27}-\frac{68\!\cdots\!87}{67\!\cdots\!63}a^{26}+\frac{52\!\cdots\!65}{67\!\cdots\!63}a^{25}+\frac{33\!\cdots\!78}{67\!\cdots\!63}a^{24}-\frac{84\!\cdots\!17}{67\!\cdots\!63}a^{23}+\frac{49\!\cdots\!20}{67\!\cdots\!63}a^{22}+\frac{21\!\cdots\!84}{67\!\cdots\!63}a^{21}-\frac{57\!\cdots\!28}{67\!\cdots\!63}a^{20}+\frac{24\!\cdots\!54}{67\!\cdots\!63}a^{19}+\frac{77\!\cdots\!57}{67\!\cdots\!63}a^{18}-\frac{21\!\cdots\!53}{67\!\cdots\!63}a^{17}+\frac{52\!\cdots\!60}{67\!\cdots\!63}a^{16}+\frac{14\!\cdots\!15}{67\!\cdots\!63}a^{15}-\frac{46\!\cdots\!75}{67\!\cdots\!63}a^{14}-\frac{15\!\cdots\!91}{67\!\cdots\!63}a^{13}+\frac{23\!\cdots\!41}{67\!\cdots\!63}a^{12}-\frac{56\!\cdots\!63}{67\!\cdots\!63}a^{11}-\frac{23\!\cdots\!72}{67\!\cdots\!63}a^{10}+\frac{51\!\cdots\!09}{67\!\cdots\!63}a^{9}-\frac{35\!\cdots\!99}{67\!\cdots\!63}a^{8}-\frac{12\!\cdots\!51}{67\!\cdots\!63}a^{7}+\frac{57\!\cdots\!66}{67\!\cdots\!63}a^{6}+\frac{70\!\cdots\!22}{67\!\cdots\!63}a^{5}-\frac{10\!\cdots\!89}{67\!\cdots\!63}a^{4}+\frac{31\!\cdots\!56}{67\!\cdots\!63}a^{3}+\frac{12\!\cdots\!05}{67\!\cdots\!63}a^{2}-\frac{80\!\cdots\!31}{67\!\cdots\!63}a-\frac{10\!\cdots\!47}{11\!\cdots\!59}$, $\frac{60\!\cdots\!75}{67\!\cdots\!63}a^{33}-\frac{12\!\cdots\!58}{67\!\cdots\!63}a^{32}+\frac{14\!\cdots\!38}{67\!\cdots\!63}a^{31}+\frac{34\!\cdots\!82}{67\!\cdots\!63}a^{30}-\frac{77\!\cdots\!74}{67\!\cdots\!63}a^{29}+\frac{71\!\cdots\!14}{67\!\cdots\!63}a^{28}+\frac{73\!\cdots\!46}{67\!\cdots\!63}a^{27}-\frac{17\!\cdots\!32}{67\!\cdots\!63}a^{26}+\frac{13\!\cdots\!41}{67\!\cdots\!63}a^{25}+\frac{67\!\cdots\!09}{67\!\cdots\!63}a^{24}-\frac{20\!\cdots\!52}{67\!\cdots\!63}a^{23}+\frac{11\!\cdots\!52}{67\!\cdots\!63}a^{22}+\frac{18\!\cdots\!49}{67\!\cdots\!63}a^{21}-\frac{12\!\cdots\!09}{67\!\cdots\!63}a^{20}+\frac{47\!\cdots\!20}{67\!\cdots\!63}a^{19}-\frac{10\!\cdots\!14}{67\!\cdots\!63}a^{18}-\frac{40\!\cdots\!57}{67\!\cdots\!63}a^{17}+\frac{86\!\cdots\!30}{67\!\cdots\!63}a^{16}-\frac{83\!\cdots\!53}{67\!\cdots\!63}a^{15}-\frac{61\!\cdots\!64}{67\!\cdots\!63}a^{14}+\frac{79\!\cdots\!11}{67\!\cdots\!63}a^{13}-\frac{17\!\cdots\!07}{67\!\cdots\!63}a^{12}-\frac{14\!\cdots\!34}{67\!\cdots\!63}a^{11}+\frac{61\!\cdots\!33}{67\!\cdots\!63}a^{10}-\frac{11\!\cdots\!59}{67\!\cdots\!63}a^{9}+\frac{62\!\cdots\!51}{67\!\cdots\!63}a^{8}+\frac{34\!\cdots\!12}{67\!\cdots\!63}a^{7}-\frac{87\!\cdots\!69}{67\!\cdots\!63}a^{6}+\frac{80\!\cdots\!85}{67\!\cdots\!63}a^{5}+\frac{11\!\cdots\!76}{67\!\cdots\!63}a^{4}-\frac{21\!\cdots\!53}{67\!\cdots\!63}a^{3}-\frac{73\!\cdots\!87}{67\!\cdots\!63}a^{2}+\frac{55\!\cdots\!92}{67\!\cdots\!63}a+\frac{12\!\cdots\!56}{11\!\cdots\!59}$, $\frac{27\!\cdots\!20}{67\!\cdots\!63}a^{33}-\frac{38\!\cdots\!73}{67\!\cdots\!63}a^{32}+\frac{46\!\cdots\!59}{67\!\cdots\!63}a^{31}+\frac{17\!\cdots\!93}{67\!\cdots\!63}a^{30}-\frac{23\!\cdots\!17}{67\!\cdots\!63}a^{29}+\frac{22\!\cdots\!85}{67\!\cdots\!63}a^{28}+\frac{44\!\cdots\!37}{67\!\cdots\!63}a^{27}-\frac{54\!\cdots\!55}{67\!\cdots\!63}a^{26}+\frac{42\!\cdots\!31}{67\!\cdots\!63}a^{25}+\frac{56\!\cdots\!23}{67\!\cdots\!63}a^{24}-\frac{64\!\cdots\!22}{67\!\cdots\!63}a^{23}+\frac{35\!\cdots\!02}{67\!\cdots\!63}a^{22}+\frac{39\!\cdots\!28}{67\!\cdots\!63}a^{21}-\frac{41\!\cdots\!95}{67\!\cdots\!63}a^{20}+\frac{14\!\cdots\!89}{67\!\cdots\!63}a^{19}+\frac{15\!\cdots\!91}{67\!\cdots\!63}a^{18}-\frac{15\!\cdots\!82}{67\!\cdots\!63}a^{17}+\frac{11\!\cdots\!39}{67\!\cdots\!63}a^{16}+\frac{33\!\cdots\!65}{67\!\cdots\!63}a^{15}-\frac{31\!\cdots\!86}{67\!\cdots\!63}a^{14}-\frac{13\!\cdots\!72}{67\!\cdots\!63}a^{13}+\frac{49\!\cdots\!57}{67\!\cdots\!63}a^{12}-\frac{33\!\cdots\!21}{67\!\cdots\!63}a^{11}-\frac{49\!\cdots\!70}{67\!\cdots\!63}a^{10}+\frac{62\!\cdots\!05}{67\!\cdots\!63}a^{9}-\frac{12\!\cdots\!13}{67\!\cdots\!63}a^{8}-\frac{45\!\cdots\!01}{67\!\cdots\!63}a^{7}+\frac{53\!\cdots\!98}{67\!\cdots\!63}a^{6}+\frac{15\!\cdots\!24}{67\!\cdots\!63}a^{5}-\frac{36\!\cdots\!08}{67\!\cdots\!63}a^{4}+\frac{81\!\cdots\!70}{67\!\cdots\!63}a^{3}+\frac{73\!\cdots\!27}{67\!\cdots\!63}a^{2}-\frac{43\!\cdots\!73}{67\!\cdots\!63}a-\frac{14\!\cdots\!14}{11\!\cdots\!59}$, $\frac{54\!\cdots\!46}{67\!\cdots\!63}a^{33}-\frac{63\!\cdots\!02}{67\!\cdots\!63}a^{32}+\frac{10\!\cdots\!12}{67\!\cdots\!63}a^{31}+\frac{35\!\cdots\!84}{67\!\cdots\!63}a^{30}-\frac{37\!\cdots\!86}{67\!\cdots\!63}a^{29}+\frac{54\!\cdots\!92}{67\!\cdots\!63}a^{28}+\frac{88\!\cdots\!52}{67\!\cdots\!63}a^{27}-\frac{85\!\cdots\!53}{67\!\cdots\!63}a^{26}+\frac{10\!\cdots\!62}{67\!\cdots\!63}a^{25}+\frac{11\!\cdots\!16}{67\!\cdots\!63}a^{24}-\frac{99\!\cdots\!62}{67\!\cdots\!63}a^{23}+\frac{10\!\cdots\!78}{67\!\cdots\!63}a^{22}+\frac{78\!\cdots\!96}{67\!\cdots\!63}a^{21}-\frac{63\!\cdots\!22}{67\!\cdots\!63}a^{20}+\frac{55\!\cdots\!72}{67\!\cdots\!63}a^{19}+\frac{30\!\cdots\!41}{67\!\cdots\!63}a^{18}-\frac{22\!\cdots\!13}{67\!\cdots\!63}a^{17}+\frac{13\!\cdots\!41}{67\!\cdots\!63}a^{16}+\frac{67\!\cdots\!16}{67\!\cdots\!63}a^{15}-\frac{46\!\cdots\!41}{67\!\cdots\!63}a^{14}-\frac{56\!\cdots\!75}{67\!\cdots\!63}a^{13}+\frac{92\!\cdots\!05}{67\!\cdots\!63}a^{12}-\frac{63\!\cdots\!54}{67\!\cdots\!63}a^{11}-\frac{71\!\cdots\!65}{67\!\cdots\!63}a^{10}+\frac{10\!\cdots\!30}{67\!\cdots\!63}a^{9}-\frac{63\!\cdots\!23}{67\!\cdots\!63}a^{8}-\frac{83\!\cdots\!45}{67\!\cdots\!63}a^{7}+\frac{92\!\cdots\!49}{67\!\cdots\!63}a^{6}-\frac{47\!\cdots\!02}{67\!\cdots\!63}a^{5}-\frac{62\!\cdots\!75}{67\!\cdots\!63}a^{4}+\frac{49\!\cdots\!33}{67\!\cdots\!63}a^{3}+\frac{23\!\cdots\!84}{67\!\cdots\!63}a^{2}-\frac{15\!\cdots\!43}{67\!\cdots\!63}a-\frac{34\!\cdots\!08}{11\!\cdots\!59}$, $\frac{10\!\cdots\!36}{67\!\cdots\!63}a^{33}-\frac{10\!\cdots\!34}{67\!\cdots\!63}a^{32}+\frac{28\!\cdots\!64}{67\!\cdots\!63}a^{31}+\frac{67\!\cdots\!50}{67\!\cdots\!63}a^{30}-\frac{57\!\cdots\!83}{67\!\cdots\!63}a^{29}+\frac{16\!\cdots\!55}{67\!\cdots\!63}a^{28}+\frac{16\!\cdots\!56}{67\!\cdots\!63}a^{27}-\frac{12\!\cdots\!21}{67\!\cdots\!63}a^{26}+\frac{35\!\cdots\!90}{67\!\cdots\!63}a^{25}+\frac{20\!\cdots\!29}{67\!\cdots\!63}a^{24}-\frac{12\!\cdots\!65}{67\!\cdots\!63}a^{23}+\frac{62\!\cdots\!99}{10\!\cdots\!77}a^{22}+\frac{14\!\cdots\!64}{67\!\cdots\!63}a^{21}-\frac{64\!\cdots\!33}{67\!\cdots\!63}a^{20}+\frac{23\!\cdots\!71}{67\!\cdots\!63}a^{19}+\frac{53\!\cdots\!44}{67\!\cdots\!63}a^{18}-\frac{15\!\cdots\!63}{67\!\cdots\!63}a^{17}+\frac{74\!\cdots\!47}{67\!\cdots\!63}a^{16}+\frac{11\!\cdots\!63}{67\!\cdots\!63}a^{15}-\frac{20\!\cdots\!58}{67\!\cdots\!63}a^{14}+\frac{10\!\cdots\!74}{67\!\cdots\!63}a^{13}+\frac{13\!\cdots\!96}{67\!\cdots\!63}a^{12}-\frac{46\!\cdots\!34}{67\!\cdots\!63}a^{11}+\frac{40\!\cdots\!33}{67\!\cdots\!63}a^{10}+\frac{81\!\cdots\!30}{67\!\cdots\!63}a^{9}-\frac{13\!\cdots\!92}{67\!\cdots\!63}a^{8}-\frac{70\!\cdots\!57}{67\!\cdots\!63}a^{7}-\frac{19\!\cdots\!58}{67\!\cdots\!63}a^{6}-\frac{76\!\cdots\!25}{67\!\cdots\!63}a^{5}-\frac{77\!\cdots\!45}{67\!\cdots\!63}a^{4}-\frac{30\!\cdots\!78}{67\!\cdots\!63}a^{3}+\frac{82\!\cdots\!83}{67\!\cdots\!63}a^{2}-\frac{77\!\cdots\!44}{67\!\cdots\!63}a-\frac{19\!\cdots\!96}{11\!\cdots\!59}$, $\frac{30\!\cdots\!60}{67\!\cdots\!63}a^{33}-\frac{65\!\cdots\!24}{67\!\cdots\!63}a^{32}+\frac{79\!\cdots\!90}{67\!\cdots\!63}a^{31}+\frac{19\!\cdots\!71}{67\!\cdots\!63}a^{30}-\frac{40\!\cdots\!01}{67\!\cdots\!63}a^{29}+\frac{42\!\cdots\!80}{67\!\cdots\!63}a^{28}+\frac{45\!\cdots\!19}{67\!\cdots\!63}a^{27}-\frac{95\!\cdots\!57}{67\!\cdots\!63}a^{26}+\frac{84\!\cdots\!93}{67\!\cdots\!63}a^{25}+\frac{55\!\cdots\!61}{67\!\cdots\!63}a^{24}-\frac{11\!\cdots\!69}{67\!\cdots\!63}a^{23}+\frac{81\!\cdots\!60}{67\!\cdots\!63}a^{22}+\frac{36\!\cdots\!67}{67\!\cdots\!63}a^{21}-\frac{76\!\cdots\!25}{67\!\cdots\!63}a^{20}+\frac{40\!\cdots\!92}{67\!\cdots\!63}a^{19}+\frac{12\!\cdots\!82}{67\!\cdots\!63}a^{18}-\frac{27\!\cdots\!30}{67\!\cdots\!63}a^{17}+\frac{92\!\cdots\!98}{67\!\cdots\!63}a^{16}+\frac{23\!\cdots\!37}{67\!\cdots\!63}a^{15}-\frac{56\!\cdots\!23}{67\!\cdots\!63}a^{14}-\frac{65\!\cdots\!54}{67\!\cdots\!63}a^{13}+\frac{34\!\cdots\!64}{67\!\cdots\!63}a^{12}-\frac{65\!\cdots\!22}{67\!\cdots\!63}a^{11}-\frac{34\!\cdots\!64}{67\!\cdots\!63}a^{10}+\frac{11\!\cdots\!86}{10\!\cdots\!77}a^{9}-\frac{44\!\cdots\!51}{67\!\cdots\!63}a^{8}-\frac{15\!\cdots\!13}{67\!\cdots\!63}a^{7}+\frac{66\!\cdots\!86}{67\!\cdots\!63}a^{6}+\frac{99\!\cdots\!76}{67\!\cdots\!63}a^{5}-\frac{17\!\cdots\!05}{67\!\cdots\!63}a^{4}+\frac{26\!\cdots\!60}{67\!\cdots\!63}a^{3}+\frac{12\!\cdots\!31}{67\!\cdots\!63}a^{2}-\frac{76\!\cdots\!47}{67\!\cdots\!63}a-\frac{80\!\cdots\!95}{11\!\cdots\!59}$, $\frac{49\!\cdots\!22}{67\!\cdots\!63}a^{33}-\frac{61\!\cdots\!50}{67\!\cdots\!63}a^{32}+\frac{77\!\cdots\!65}{67\!\cdots\!63}a^{31}+\frac{32\!\cdots\!81}{67\!\cdots\!63}a^{30}-\frac{36\!\cdots\!53}{67\!\cdots\!63}a^{29}+\frac{38\!\cdots\!97}{67\!\cdots\!63}a^{28}+\frac{81\!\cdots\!67}{67\!\cdots\!63}a^{27}-\frac{86\!\cdots\!55}{67\!\cdots\!63}a^{26}+\frac{72\!\cdots\!39}{67\!\cdots\!63}a^{25}+\frac{10\!\cdots\!51}{67\!\cdots\!63}a^{24}-\frac{10\!\cdots\!82}{67\!\cdots\!63}a^{23}+\frac{63\!\cdots\!72}{67\!\cdots\!63}a^{22}+\frac{75\!\cdots\!50}{67\!\cdots\!63}a^{21}-\frac{68\!\cdots\!20}{67\!\cdots\!63}a^{20}+\frac{26\!\cdots\!75}{67\!\cdots\!63}a^{19}+\frac{30\!\cdots\!74}{67\!\cdots\!63}a^{18}-\frac{25\!\cdots\!20}{67\!\cdots\!63}a^{17}+\frac{29\!\cdots\!10}{67\!\cdots\!63}a^{16}+\frac{71\!\cdots\!86}{67\!\cdots\!63}a^{15}-\frac{58\!\cdots\!80}{67\!\cdots\!63}a^{14}-\frac{22\!\cdots\!24}{67\!\cdots\!63}a^{13}+\frac{10\!\cdots\!62}{67\!\cdots\!63}a^{12}-\frac{75\!\cdots\!45}{67\!\cdots\!63}a^{11}-\frac{96\!\cdots\!16}{67\!\cdots\!63}a^{10}+\frac{12\!\cdots\!10}{67\!\cdots\!63}a^{9}-\frac{51\!\cdots\!69}{67\!\cdots\!63}a^{8}-\frac{11\!\cdots\!04}{67\!\cdots\!63}a^{7}+\frac{12\!\cdots\!19}{67\!\cdots\!63}a^{6}+\frac{10\!\cdots\!16}{67\!\cdots\!63}a^{5}-\frac{75\!\cdots\!34}{67\!\cdots\!63}a^{4}+\frac{66\!\cdots\!74}{67\!\cdots\!63}a^{3}+\frac{29\!\cdots\!92}{67\!\cdots\!63}a^{2}-\frac{19\!\cdots\!17}{67\!\cdots\!63}a+\frac{10\!\cdots\!16}{11\!\cdots\!59}$, $\frac{22\!\cdots\!51}{67\!\cdots\!63}a^{33}-\frac{28\!\cdots\!93}{67\!\cdots\!63}a^{32}+\frac{57\!\cdots\!21}{67\!\cdots\!63}a^{31}+\frac{14\!\cdots\!08}{67\!\cdots\!63}a^{30}-\frac{16\!\cdots\!41}{67\!\cdots\!63}a^{29}+\frac{31\!\cdots\!85}{67\!\cdots\!63}a^{28}+\frac{35\!\cdots\!63}{67\!\cdots\!63}a^{27}-\frac{37\!\cdots\!35}{67\!\cdots\!63}a^{26}+\frac{67\!\cdots\!78}{67\!\cdots\!63}a^{25}+\frac{43\!\cdots\!40}{67\!\cdots\!63}a^{24}-\frac{42\!\cdots\!98}{67\!\cdots\!63}a^{23}+\frac{71\!\cdots\!33}{67\!\cdots\!63}a^{22}+\frac{29\!\cdots\!03}{67\!\cdots\!63}a^{21}-\frac{25\!\cdots\!72}{67\!\cdots\!63}a^{20}+\frac{40\!\cdots\!47}{67\!\cdots\!63}a^{19}+\frac{11\!\cdots\!28}{67\!\cdots\!63}a^{18}-\frac{83\!\cdots\!48}{67\!\cdots\!63}a^{17}+\frac{12\!\cdots\!87}{67\!\cdots\!63}a^{16}+\frac{23\!\cdots\!26}{67\!\cdots\!63}a^{15}-\frac{15\!\cdots\!22}{67\!\cdots\!63}a^{14}+\frac{12\!\cdots\!71}{67\!\cdots\!63}a^{13}+\frac{31\!\cdots\!83}{67\!\cdots\!63}a^{12}-\frac{22\!\cdots\!03}{67\!\cdots\!63}a^{11}-\frac{14\!\cdots\!72}{67\!\cdots\!63}a^{10}+\frac{35\!\cdots\!42}{67\!\cdots\!63}a^{9}-\frac{36\!\cdots\!66}{67\!\cdots\!63}a^{8}-\frac{22\!\cdots\!21}{67\!\cdots\!63}a^{7}+\frac{22\!\cdots\!17}{67\!\cdots\!63}a^{6}-\frac{10\!\cdots\!14}{67\!\cdots\!63}a^{5}-\frac{17\!\cdots\!71}{67\!\cdots\!63}a^{4}+\frac{16\!\cdots\!91}{67\!\cdots\!63}a^{3}+\frac{79\!\cdots\!29}{67\!\cdots\!63}a^{2}-\frac{55\!\cdots\!32}{67\!\cdots\!63}a+\frac{21\!\cdots\!88}{11\!\cdots\!59}$, $\frac{16\!\cdots\!36}{67\!\cdots\!63}a^{33}-\frac{11\!\cdots\!52}{67\!\cdots\!63}a^{32}+\frac{86\!\cdots\!07}{67\!\cdots\!63}a^{31}+\frac{10\!\cdots\!20}{67\!\cdots\!63}a^{30}-\frac{66\!\cdots\!84}{67\!\cdots\!63}a^{29}+\frac{26\!\cdots\!17}{67\!\cdots\!63}a^{28}+\frac{28\!\cdots\!46}{67\!\cdots\!63}a^{27}-\frac{14\!\cdots\!45}{67\!\cdots\!63}a^{26}-\frac{44\!\cdots\!14}{67\!\cdots\!63}a^{25}+\frac{39\!\cdots\!67}{67\!\cdots\!63}a^{24}-\frac{16\!\cdots\!32}{67\!\cdots\!63}a^{23}-\frac{77\!\cdots\!68}{67\!\cdots\!63}a^{22}+\frac{30\!\cdots\!02}{67\!\cdots\!63}a^{21}-\frac{10\!\cdots\!91}{67\!\cdots\!63}a^{20}-\frac{99\!\cdots\!09}{67\!\cdots\!63}a^{19}+\frac{12\!\cdots\!30}{67\!\cdots\!63}a^{18}-\frac{40\!\cdots\!89}{67\!\cdots\!63}a^{17}-\frac{55\!\cdots\!65}{67\!\cdots\!63}a^{16}+\frac{31\!\cdots\!66}{67\!\cdots\!63}a^{15}-\frac{99\!\cdots\!66}{67\!\cdots\!63}a^{14}-\frac{19\!\cdots\!25}{67\!\cdots\!63}a^{13}+\frac{43\!\cdots\!51}{67\!\cdots\!63}a^{12}-\frac{12\!\cdots\!87}{67\!\cdots\!63}a^{11}-\frac{47\!\cdots\!65}{67\!\cdots\!63}a^{10}+\frac{39\!\cdots\!53}{67\!\cdots\!63}a^{9}+\frac{26\!\cdots\!27}{67\!\cdots\!63}a^{8}-\frac{51\!\cdots\!47}{67\!\cdots\!63}a^{7}+\frac{45\!\cdots\!81}{67\!\cdots\!63}a^{6}+\frac{11\!\cdots\!29}{67\!\cdots\!63}a^{5}-\frac{38\!\cdots\!29}{67\!\cdots\!63}a^{4}+\frac{11\!\cdots\!07}{67\!\cdots\!63}a^{3}+\frac{73\!\cdots\!79}{67\!\cdots\!63}a^{2}-\frac{48\!\cdots\!37}{67\!\cdots\!63}a+\frac{10\!\cdots\!16}{11\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2016418740785133.8 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{17}\cdot 2016418740785133.8 \cdot 5105}{2\cdot\sqrt{2652335238355663972863781109929452800183143879582476922663961790823}}\cr\approx \mathstrut & 0.117162877778479 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^34 - x^33 + 2*x^32 + 64*x^31 - 57*x^30 + 107*x^29 + 1603*x^28 - 1261*x^27 + 2206*x^26 + 20286*x^25 - 13891*x^24 + 22349*x^23 + 140429*x^22 - 82189*x^21 + 120996*x^20 + 538574*x^19 - 264119*x^18 + 327327*x^17 + 1143572*x^16 - 499882*x^15 + 128724*x^14 + 1425880*x^13 - 737516*x^12 - 1133952*x^11 + 1294431*x^10 - 1061173*x^9 - 1305757*x^8 + 907693*x^7 - 16051*x^6 - 713165*x^5 + 590348*x^4 + 474529*x^3 + 129602*x^2 - 93135*x + 56857);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{34}$ (as 34T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 34
The 34 conjugacy class representatives for $C_{34}$
Character table for $C_{34}$

Intermediate fields

\(\Q(\sqrt{-103}) \), 17.17.160470643909878751793805444097921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17^{2}$ $34$ $34$ $17^{2}$ $34$ $17^{2}$ $17^{2}$ $17^{2}$ $17^{2}$ $17^{2}$ $34$ $34$ $17^{2}$ $34$ ${\href{/padicField/47.2.0.1}{2} }^{17}$ $34$ $17^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(103\) Copy content Toggle raw display Deg $34$$34$$1$$33$