Properties

Label 33.1.554...872.1
Degree $33$
Signature $[1, 16]$
Discriminant $5.545\times 10^{59}$
Root discriminant \(64.63\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{33}$ (as 33T162)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^33 - x - 2)
 
gp: K = bnfinit(y^33 - y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^33 - x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^33 - x - 2)
 

\( x^{33} - x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $33$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(554523399760721082797165478848537512039766641116402126159872\) \(\medspace = 2^{32}\cdot 31\cdot 491\cdot 35603\cdot 23\!\cdots\!39\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(64.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(31\), \(491\), \(35603\), \(23824\!\cdots\!38639\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{12911\!\cdots\!69057}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $16$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{17}+a+1$, $a^{2}+a+1$, $a^{22}+a^{11}+1$, $a^{32}-a^{31}+a^{30}-a^{29}+a^{28}-a^{27}+a^{26}-a^{25}+a^{21}-a^{20}+a^{19}-a^{18}+a^{17}-a^{16}+a^{15}-a^{14}+a^{10}-a^{9}+a^{8}-a^{7}+a^{6}-a^{5}+a^{4}-a^{3}-1$, $a^{25}-a^{17}+a^{9}-a-1$, $a^{29}-a^{25}+a^{21}-a^{17}+a^{13}-a^{9}+a^{5}-a-1$, $a^{31}-a^{29}+a^{27}-a^{25}+a^{23}-a^{21}+a^{19}-a^{17}+a^{15}-a^{13}+a^{11}-a^{9}+a^{7}-a^{5}+a^{3}-a-1$, $a^{32}-a^{31}-a^{30}-a^{27}+a^{25}-a^{24}-a^{21}-2a^{20}+a^{19}+a^{16}-2a^{14}-a^{13}+a^{12}-a^{11}+a^{9}-a^{7}+a^{6}-a^{5}-3a^{4}+a^{2}-1$, $2a^{32}-2a^{31}-a^{30}+2a^{29}-a^{27}+2a^{25}-2a^{24}-a^{23}+2a^{22}+2a^{21}-3a^{20}-a^{19}+2a^{18}+a^{17}-2a^{16}+a^{15}+2a^{14}-3a^{13}-a^{12}+2a^{11}+3a^{10}-4a^{9}+2a^{7}-2a^{5}+a^{4}+3a^{3}-4a^{2}+1$, $3a^{32}+7a^{31}+7a^{30}+7a^{29}+7a^{28}+4a^{27}+3a^{26}-a^{25}-5a^{24}-7a^{23}-10a^{22}-9a^{21}-9a^{20}-7a^{19}-3a^{18}+6a^{16}+9a^{15}+11a^{14}+14a^{13}+11a^{12}+10a^{11}+5a^{10}-a^{9}-5a^{8}-12a^{7}-15a^{6}-17a^{5}-17a^{4}-12a^{3}-9a^{2}-a+3$, $a^{31}+2a^{30}-a^{29}+a^{28}-2a^{27}+2a^{26}-2a^{25}-3a^{23}-a^{18}+3a^{17}+3a^{15}-2a^{14}+2a^{13}+2a^{11}-2a^{10}-2a^{9}-a^{8}-a^{7}-4a^{5}-a^{3}+4a^{2}+1$, $6a^{31}+3a^{30}-3a^{29}-4a^{28}-2a^{27}+2a^{26}+a^{25}+a^{24}+a^{22}-a^{21}-5a^{20}-3a^{19}+4a^{18}+7a^{17}+a^{16}-7a^{15}-7a^{14}+7a^{12}+5a^{11}-3a^{10}-4a^{9}-2a^{8}-3a^{6}+a^{5}+6a^{4}+5a^{3}-3a^{2}-13a-7$, $2a^{32}+a^{31}-a^{30}+2a^{29}+a^{27}+a^{26}+a^{25}+3a^{24}+2a^{22}+2a^{21}-2a^{20}+2a^{19}-a^{17}+a^{16}-a^{15}-3a^{13}-2a^{12}-a^{11}-6a^{10}-2a^{8}-4a^{7}-4a^{5}-a^{4}-4a^{3}-a^{2}+a-5$, $a^{32}-a^{31}+2a^{29}+4a^{28}+a^{27}-2a^{26}+a^{25}+4a^{24}+4a^{23}+a^{22}+2a^{21}+3a^{20}-2a^{18}+a^{17}+6a^{16}+a^{15}-4a^{14}-4a^{13}-a^{12}-4a^{10}-2a^{9}-3a^{7}-9a^{6}-7a^{5}+2a^{4}+3a^{3}-3a^{2}-6a-1$, $6a^{32}-16a^{31}-14a^{30}+10a^{29}+18a^{28}-4a^{27}-22a^{26}-8a^{25}+18a^{24}+15a^{23}-15a^{22}-24a^{21}+3a^{20}+25a^{19}+8a^{18}-25a^{17}-20a^{16}+17a^{15}+29a^{14}-3a^{13}-31a^{12}-10a^{11}+31a^{10}+27a^{9}-17a^{8}-33a^{7}+5a^{6}+40a^{5}+16a^{4}-33a^{3}-29a^{2}+22a+35$, $8a^{32}+2a^{31}-7a^{30}+4a^{29}-15a^{28}+13a^{27}-4a^{26}+9a^{25}+2a^{24}-13a^{23}+4a^{22}-13a^{21}+17a^{20}-2a^{19}+5a^{18}-16a^{16}+7a^{15}-10a^{14}+17a^{13}-a^{12}+4a^{11}-3a^{10}-20a^{9}+10a^{8}-6a^{7}+21a^{6}-a^{5}-5a^{4}-6a^{3}-19a^{2}+18a-11$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 133008702440587730 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{16}\cdot 133008702440587730 \cdot 1}{2\cdot\sqrt{554523399760721082797165478848537512039766641116402126159872}}\cr\approx \mathstrut & 1.05389662047802 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^33 - x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^33 - x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^33 - x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^33 - x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{33}$ (as 33T162):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 8683317618811886495518194401280000000
The 10143 conjugacy class representatives for $S_{33}$ are not computed
Character table for $S_{33}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $26{,}\,{\href{/padicField/3.7.0.1}{7} }$ $17{,}\,16$ $21{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.5.0.1}{5} }$ $32{,}\,{\href{/padicField/11.1.0.1}{1} }$ $20{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $20{,}\,{\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ $19{,}\,{\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ $17{,}\,{\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ R $31{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $17{,}\,16$ $23{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ $30{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $32$$32$$1$$32$
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
31.2.1.1$x^{2} + 93$$2$$1$$1$$C_2$$[\ ]_{2}$
31.3.0.1$x^{3} + x + 28$$1$$3$$0$$C_3$$[\ ]^{3}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
31.6.0.1$x^{6} + 19 x^{3} + 16 x^{2} + 8 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
31.16.0.1$x^{16} + 28 x^{7} + 24 x^{6} + 26 x^{5} + 28 x^{4} + 11 x^{3} + 19 x^{2} + 27 x + 3$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(491\) Copy content Toggle raw display $\Q_{491}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(35603\) Copy content Toggle raw display $\Q_{35603}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{35603}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{35603}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $28$$1$$28$$0$$C_{28}$$[\ ]^{28}$
\(238\!\cdots\!639\) Copy content Toggle raw display $\Q_{23\!\cdots\!39}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{23\!\cdots\!39}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$