Properties

Label 30.30.175...397.1
Degree $30$
Signature $[30, 0]$
Discriminant $1.758\times 10^{49}$
Root discriminant \(43.80\)
Ramified primes $7,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1)
 
gp: K = bnfinit(y^30 - y^29 - 30*y^28 + 29*y^27 + 405*y^26 - 377*y^25 - 3250*y^24 + 2901*y^23 + 17249*y^22 - 14697*y^21 - 63734*y^20 + 51590*y^19 + 168035*y^18 - 128611*y^17 - 318629*y^16 + 229651*y^15 + 432159*y^14 - 292608*y^13 - 411241*y^12 + 261924*y^11 + 264472*y^10 - 159873*y^9 - 107406*y^8 + 63143*y^7 + 24051*y^6 - 14609*y^5 - 2010*y^4 + 1562*y^3 - 72*y^2 - 24*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1)
 

\( x^{30} - x^{29} - 30 x^{28} + 29 x^{27} + 405 x^{26} - 377 x^{25} - 3250 x^{24} + 2901 x^{23} + 17249 x^{22} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[30, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(17581401814197409148890873176573567284303576419397\) \(\medspace = 7^{25}\cdot 11^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(43.80\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}11^{9/10}\approx 43.80279098179992$
Ramified primes:   \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{77}) \)
$\card{ \Gal(K/\Q) }$:  $30$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(77=7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{77}(64,·)$, $\chi_{77}(1,·)$, $\chi_{77}(67,·)$, $\chi_{77}(4,·)$, $\chi_{77}(6,·)$, $\chi_{77}(71,·)$, $\chi_{77}(9,·)$, $\chi_{77}(10,·)$, $\chi_{77}(76,·)$, $\chi_{77}(13,·)$, $\chi_{77}(15,·)$, $\chi_{77}(16,·)$, $\chi_{77}(17,·)$, $\chi_{77}(19,·)$, $\chi_{77}(23,·)$, $\chi_{77}(24,·)$, $\chi_{77}(25,·)$, $\chi_{77}(68,·)$, $\chi_{77}(36,·)$, $\chi_{77}(37,·)$, $\chi_{77}(40,·)$, $\chi_{77}(41,·)$, $\chi_{77}(52,·)$, $\chi_{77}(53,·)$, $\chi_{77}(54,·)$, $\chi_{77}(73,·)$, $\chi_{77}(58,·)$, $\chi_{77}(60,·)$, $\chi_{77}(61,·)$, $\chi_{77}(62,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $29$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{22}-22a^{20}+209a^{18}-1122a^{16}+3740a^{14}-8008a^{12}+11011a^{10}-9438a^{8}+4719a^{6}-1210a^{4}+121a^{2}-1$, $a^{11}-11a^{9}+44a^{7}-77a^{5}+55a^{3}-11a$, $a^{28}-28a^{26}+350a^{24}-2576a^{22}+12397a^{20}-40964a^{18}+94962a^{16}-155040a^{14}+176358a^{12}-136136a^{10}+68068a^{8}-20384a^{6}+3185a^{4}-196a^{2}+2$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-2$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-1$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+2940a^{13}-5733a^{11}+7007a^{9}-5148a^{7}+2079a^{5}-385a^{3}+21a$, $a^{14}-14a^{12}-a^{11}+77a^{10}+11a^{9}-210a^{8}-44a^{7}+294a^{6}+77a^{5}-196a^{4}-55a^{3}+49a^{2}+11a-2$, $a^{28}-28a^{26}+350a^{24}-2576a^{22}+a^{21}+12397a^{20}-21a^{19}-40964a^{18}+189a^{17}+94962a^{16}-952a^{15}-155039a^{14}+2940a^{13}+176344a^{12}-5732a^{11}-136059a^{10}+6996a^{9}+67858a^{8}-5103a^{7}-20090a^{6}+1995a^{5}+2989a^{4}-316a^{3}-147a^{2}+3a+1$, $a^{28}-28a^{26}+350a^{24}-2577a^{22}+a^{21}+12419a^{20}-21a^{19}-41173a^{18}+189a^{17}+96084a^{16}-952a^{15}-158779a^{14}+2940a^{13}+184352a^{12}-5734a^{11}-147070a^{10}+7018a^{9}+77296a^{8}-5191a^{7}-24809a^{6}+2149a^{5}+4199a^{4}-426a^{3}-268a^{2}+25a+2$, $a^{28}-28a^{26}+350a^{24}-2577a^{22}+a^{21}+12419a^{20}-21a^{19}-41173a^{18}+189a^{17}+96084a^{16}-952a^{15}-158779a^{14}+2940a^{13}+184352a^{12}-5733a^{11}-147070a^{10}+7007a^{9}+77296a^{8}-5147a^{7}-24809a^{6}+2072a^{5}+4199a^{4}-371a^{3}-268a^{2}+14a+3$, $a^{11}-11a^{9}+43a^{7}-70a^{5}+41a^{3}-4a$, $a^{28}-28a^{26}-a^{25}+350a^{24}+25a^{23}-2576a^{22}-274a^{21}+12397a^{20}+1729a^{19}-40964a^{18}-6936a^{17}+94962a^{16}+18428a^{15}-155040a^{14}-32760a^{13}+176358a^{12}+38467a^{11}-136136a^{10}-28743a^{9}+68068a^{8}+12727a^{7}-20384a^{6}-2926a^{5}+3185a^{4}+264a^{3}-196a^{2}-a+3$, $a^{28}-28a^{26}+350a^{24}-2576a^{22}+12397a^{20}-40964a^{18}+94962a^{16}-155040a^{14}+176358a^{12}-a^{11}-136136a^{10}+11a^{9}+68068a^{8}-44a^{7}-20384a^{6}+77a^{5}+3185a^{4}-55a^{3}-196a^{2}+11a+2$, $a^{29}-2a^{28}-28a^{27}+56a^{26}+349a^{25}-700a^{24}-2550a^{23}+5150a^{22}+12099a^{21}-24750a^{20}-38984a^{19}+81510a^{18}+86526a^{17}-187680a^{16}-130967a^{15}+302598a^{14}+129695a^{13}-336671a^{12}-75104a^{11}+250084a^{10}+15621a^{9}-116786a^{8}+7710a^{7}+30631a^{6}-5299a^{5}-3459a^{4}+945a^{3}+26a^{2}-20a+1$, $a^{4}-4a^{2}+2$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+2$, $a^{27}-27a^{25}+324a^{23}-2277a^{21}+10395a^{19}-32319a^{17}+69768a^{15}-104652a^{13}+107406a^{11}-72930a^{9}+30888a^{7}-7371a^{5}+819a^{3}-27a$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a$, $a^{29}-29a^{27}+377a^{25}-a^{24}-2900a^{23}+25a^{22}+14674a^{21}-274a^{20}-51358a^{19}+1729a^{18}+127261a^{17}-6936a^{16}-224638a^{15}+18427a^{14}+280211a^{13}-32745a^{12}-241281a^{11}+38377a^{10}+137072a^{9}-28468a^{8}-47202a^{7}+12278a^{6}+8245a^{5}-2556a^{4}-436a^{3}+144a^{2}+3a-1$, $a^{5}-5a^{3}+5a+1$, $a^{28}-28a^{26}+349a^{24}-2552a^{22}+a^{21}+12144a^{20}-21a^{19}-39424a^{18}+189a^{17}+88978a^{16}-952a^{15}-139551a^{14}+2939a^{13}+149317a^{12}-5720a^{11}-104599a^{10}+6941a^{9}+44263a^{8}-4982a^{7}-9442a^{6}+1863a^{5}+448a^{4}-250a^{3}+96a^{2}-8a-1$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+3$, $a^{3}-3a$, $a$, $a^{13}-13a^{11}-a^{10}+65a^{9}+10a^{8}-156a^{7}-35a^{6}+182a^{5}+50a^{4}-91a^{3}-25a^{2}+13a+2$, $a^{5}-5a^{3}+5a$, $a^{22}-22a^{20}+209a^{18}-a^{17}-1122a^{16}+17a^{15}+3740a^{14}-119a^{13}-8008a^{12}+442a^{11}+11011a^{10}-935a^{9}-9438a^{8}+1122a^{7}+4719a^{6}-714a^{5}-1210a^{4}+204a^{3}+121a^{2}-17a-2$, $a^{18}-18a^{16}+135a^{14}-546a^{12}+1287a^{10}-1783a^{8}+1394a^{6}-560a^{4}+97a^{2}-4$, $a^{29}-a^{28}-30a^{27}+28a^{26}+406a^{25}-351a^{24}-3275a^{23}+2601a^{22}+17525a^{21}-12673a^{20}-65505a^{19}+42735a^{18}+175350a^{17}-102277a^{16}-338979a^{15}+175388a^{14}+470934a^{13}-215102a^{12}-461720a^{11}+186420a^{10}+308516a^{9}-111473a^{8}-132211a^{7}+44025a^{6}+32521a^{5}-10494a^{4}-3584a^{3}+1195a^{2}+52a-21$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 864355592506536.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{30}\cdot(2\pi)^{0}\cdot 864355592506536.0 \cdot 1}{2\cdot\sqrt{17581401814197409148890873176573567284303576419397}}\cr\approx \mathstrut & 0.110671442530690 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 - 30*x^28 + 29*x^27 + 405*x^26 - 377*x^25 - 3250*x^24 + 2901*x^23 + 17249*x^22 - 14697*x^21 - 63734*x^20 + 51590*x^19 + 168035*x^18 - 128611*x^17 - 318629*x^16 + 229651*x^15 + 432159*x^14 - 292608*x^13 - 411241*x^12 + 261924*x^11 + 264472*x^10 - 159873*x^9 - 107406*x^8 + 63143*x^7 + 24051*x^6 - 14609*x^5 - 2010*x^4 + 1562*x^3 - 72*x^2 - 24*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{30}$ (as 30T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{77}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.6.22370117.1, 10.10.39630026842637.1, 15.15.886528337182930278529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $30$ $30$ $30$ R R ${\href{/padicField/13.5.0.1}{5} }^{6}$ $15^{2}$ $15^{2}$ ${\href{/padicField/23.3.0.1}{3} }^{10}$ ${\href{/padicField/29.10.0.1}{10} }^{3}$ $30$ $15^{2}$ ${\href{/padicField/41.5.0.1}{5} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{15}$ $30$ $15^{2}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $30$$6$$5$$25$
\(11\) Copy content Toggle raw display Deg $30$$10$$3$$27$