# Properties

 Label 3.3.361.1 Degree $3$ Signature $[3, 0]$ Discriminant $361$ Root discriminant $7.12$ Ramified prime $19$ Class number $1$ Class group trivial Galois group $C_3$ (as 3T1)

# Related objects

Show commands for: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^3 - x^2 - 6*x + 7)

gp: K = bnfinit(x^3 - x^2 - 6*x + 7, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, -6, -1, 1]);

$$x^{3} - x^{2} - 6 x + 7$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $3$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[3, 0]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$361$$$$\medspace = 19^{2}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $7.12$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $19$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Gal(K/\Q)|$: $3$ This field is Galois and abelian over $\Q$. Conductor: $$19$$ Dirichlet character group: $\lbrace$$\chi_{19}(1,·), \chi_{19}(11,·), \chi_{19}(7,·)$$\rbrace$ This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $2$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$a^{2} + a - 4$$,  $$a - 1$$ sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$1.95215669651$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{3}\cdot(2\pi)^{0}\cdot 1.95215669651 \cdot 1}{2\sqrt{361}}\approx 0.410980357160$

## Galois group

$C_3$ (as 3T1):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A cyclic group of order 3 The 3 conjugacy class representatives for $C_3$ Character table for $C_3$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }$ ${\href{/LocalNumberField/3.3.0.1}{3} }$ ${\href{/LocalNumberField/5.3.0.1}{3} }$ ${\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }$ R ${\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.3.2.2$x^{3} - 19$$3$$1$$2$$C_3$$[\ ]_{3}$

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.19.3t1.a.a$1$ $19$ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$
* 1.19.3t1.a.b$1$ $19$ $x^{3} - x^{2} - 6 x + 7$ $C_3$ (as 3T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.