# Properties

 Label 3.1.87.1 Degree 3 Signature $[1, 1]$ Discriminant $-\,3\cdot 29$ Ramified primes $3, 29$ Class number 1 Class group Trivial Galois Group $S_3$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: K<a> := NumberField(PolynomialRing(Rationals())![1, 2, -1, 1]);
sage: K = NumberField(x^3 - x^2 + 2*x + 1,"a")
gp: K = bnfinit(x^3 - x^2 + 2*x + 1, 1)

## Normalizeddefining polynomial

$x^{3}$ $\mathstrut -\mathstrut x^{2}$ $\mathstrut +\mathstrut 2 x$ $\mathstrut +\mathstrut 1$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $3$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[1, 1]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $-87=-\,3\cdot 29$ magma: Discriminant(K); sage: K.disc() gp: K.disc Ramified primes: $3, 29$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$.

## Integral basis (with respect to field generator $a$)

$1$, $a$, $a^{2}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial Abelian group, order 1

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $1$ magma: UnitRank(K); sage: UK.rank() gp: #K.fu Torsion generator: $-1$ magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental unit: $a$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $0.934844845546$ magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A solvable group of order 6 Conjugacy class representatives for $S_3$ Character table for $S_3$

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Sibling fields

 Galois closure: 6.0.658503.1

## Multiplicative Galois module structure

 $U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A$

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.3.0.1}{3} }$ R ${\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.3.0.1}{3} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ R ${\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0Trivial[\ ] 3.2.1.1x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
$29$$\Q_{29}$$x + 2$$1$$1$$0Trivial[\ ] 29.2.1.2x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$

## Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_29.2t1.1c1$1$ $3 \cdot 29$ $x^{2} - x + 22$ $C_2$ $1$ $-1$
* 2.3_29.3t2.1c1$2$ $3 \cdot 29$ $x^{3} - x^{2} + 2 x + 1$ $S_3$ $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.