Properties

Label 29.29.127...161.1
Degree $29$
Signature $[29, 0]$
Discriminant $1.272\times 10^{83}$
Root discriminant \(733.96\)
Ramified prime $929$
Class number not computed
Class group not computed
Galois group $C_{29}$ (as 29T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309)
 
gp: K = bnfinit(y^29 - y^28 - 448*y^27 + 107*y^26 + 76138*y^25 - 43560*y^24 - 6896718*y^23 + 8492788*y^22 + 374467531*y^21 - 737137472*y^20 - 12707566814*y^19 + 34389111341*y^18 + 270515586354*y^17 - 939536322456*y^16 - 3528471156331*y^15 + 15628114907220*y^14 + 26518327124887*y^13 - 161458375653531*y^12 - 93674380846644*y^11 + 1045971567643780*y^10 - 54383106047402*y^9 - 4238937042324143*y^8 + 1725076964802557*y^7 + 10520005444822970*y^6 - 6101874655993302*y^5 - 15103434975606529*y^4 + 9152562248392343*y^3 + 10944332007104174*y^2 - 5127494290967802*y - 2711408412652309, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309)
 

\( x^{29} - x^{28} - 448 x^{27} + 107 x^{26} + 76138 x^{25} - 43560 x^{24} - 6896718 x^{23} + \cdots - 27\!\cdots\!09 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $29$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[29, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(127\!\cdots\!161\) \(\medspace = 929^{28}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(733.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $929^{28/29}\approx 733.956539804396$
Ramified primes:   \(929\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $29$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(929\)
Dirichlet character group:    $\lbrace$$\chi_{929}(1,·)$, $\chi_{929}(261,·)$, $\chi_{929}(454,·)$, $\chi_{929}(72,·)$, $\chi_{929}(521,·)$, $\chi_{929}(524,·)$, $\chi_{929}(719,·)$, $\chi_{929}(400,·)$, $\chi_{929}(148,·)$, $\chi_{929}(537,·)$, $\chi_{929}(539,·)$, $\chi_{929}(20,·)$, $\chi_{929}(352,·)$, $\chi_{929}(673,·)$, $\chi_{929}(347,·)$, $\chi_{929}(511,·)$, $\chi_{929}(807,·)$, $\chi_{929}(173,·)$, $\chi_{929}(304,·)$, $\chi_{929}(561,·)$, $\chi_{929}(437,·)$, $\chi_{929}(201,·)$, $\chi_{929}(568,·)$, $\chi_{929}(212,·)$, $\chi_{929}(506,·)$, $\chi_{929}(379,·)$, $\chi_{929}(445,·)$, $\chi_{929}(830,·)$, $\chi_{929}(575,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{101}a^{24}+\frac{13}{101}a^{23}-\frac{1}{101}a^{22}-\frac{4}{101}a^{21}+\frac{13}{101}a^{20}+\frac{4}{101}a^{19}-\frac{32}{101}a^{18}-\frac{49}{101}a^{17}+\frac{30}{101}a^{16}-\frac{9}{101}a^{15}-\frac{32}{101}a^{14}-\frac{20}{101}a^{13}-\frac{22}{101}a^{12}-\frac{26}{101}a^{11}+\frac{17}{101}a^{10}-\frac{11}{101}a^{9}-\frac{13}{101}a^{8}-\frac{34}{101}a^{7}-\frac{23}{101}a^{6}-\frac{40}{101}a^{5}-\frac{10}{101}a^{4}-\frac{30}{101}a^{3}-\frac{28}{101}a^{2}-\frac{41}{101}a-\frac{39}{101}$, $\frac{1}{101}a^{25}+\frac{32}{101}a^{23}+\frac{9}{101}a^{22}-\frac{36}{101}a^{21}+\frac{37}{101}a^{20}+\frac{17}{101}a^{19}-\frac{37}{101}a^{18}-\frac{40}{101}a^{17}+\frac{5}{101}a^{16}-\frac{16}{101}a^{15}-\frac{8}{101}a^{14}+\frac{36}{101}a^{13}-\frac{43}{101}a^{12}-\frac{49}{101}a^{11}-\frac{30}{101}a^{10}+\frac{29}{101}a^{9}+\frac{34}{101}a^{8}+\frac{15}{101}a^{7}-\frac{44}{101}a^{6}+\frac{5}{101}a^{5}-\frac{1}{101}a^{4}-\frac{42}{101}a^{3}+\frac{20}{101}a^{2}-\frac{11}{101}a+\frac{2}{101}$, $\frac{1}{101}a^{26}-\frac{3}{101}a^{23}-\frac{4}{101}a^{22}-\frac{37}{101}a^{21}+\frac{5}{101}a^{20}+\frac{37}{101}a^{19}-\frac{26}{101}a^{18}-\frac{43}{101}a^{17}+\frac{34}{101}a^{16}-\frac{23}{101}a^{15}+\frac{50}{101}a^{14}-\frac{9}{101}a^{13}+\frac{49}{101}a^{12}-\frac{6}{101}a^{11}-\frac{10}{101}a^{10}-\frac{18}{101}a^{9}+\frac{27}{101}a^{8}+\frac{34}{101}a^{7}+\frac{34}{101}a^{6}-\frac{34}{101}a^{5}-\frac{25}{101}a^{4}-\frac{30}{101}a^{3}-\frac{24}{101}a^{2}+\frac{1}{101}a+\frac{36}{101}$, $\frac{1}{19897}a^{27}+\frac{63}{19897}a^{26}-\frac{77}{19897}a^{25}-\frac{49}{19897}a^{24}+\frac{5027}{19897}a^{23}+\frac{6033}{19897}a^{22}-\frac{7349}{19897}a^{21}+\frac{4985}{19897}a^{20}-\frac{8682}{19897}a^{19}-\frac{5743}{19897}a^{18}-\frac{8249}{19897}a^{17}-\frac{1262}{19897}a^{16}-\frac{460}{19897}a^{15}+\frac{3411}{19897}a^{14}-\frac{9743}{19897}a^{13}-\frac{8958}{19897}a^{12}+\frac{7207}{19897}a^{11}-\frac{4776}{19897}a^{10}-\frac{3642}{19897}a^{9}-\frac{2507}{19897}a^{8}+\frac{9150}{19897}a^{7}+\frac{9079}{19897}a^{6}+\frac{8681}{19897}a^{5}-\frac{9855}{19897}a^{4}-\frac{6289}{19897}a^{3}-\frac{46}{19897}a^{2}-\frac{299}{19897}a+\frac{6130}{19897}$, $\frac{1}{10\!\cdots\!27}a^{28}-\frac{82\!\cdots\!22}{10\!\cdots\!27}a^{27}-\frac{37\!\cdots\!99}{10\!\cdots\!27}a^{26}+\frac{39\!\cdots\!22}{10\!\cdots\!27}a^{25}-\frac{50\!\cdots\!45}{10\!\cdots\!27}a^{24}+\frac{32\!\cdots\!26}{10\!\cdots\!27}a^{23}-\frac{47\!\cdots\!69}{10\!\cdots\!27}a^{22}+\frac{40\!\cdots\!13}{10\!\cdots\!27}a^{21}+\frac{26\!\cdots\!88}{10\!\cdots\!27}a^{20}+\frac{96\!\cdots\!10}{10\!\cdots\!27}a^{19}-\frac{16\!\cdots\!31}{10\!\cdots\!27}a^{18}+\frac{40\!\cdots\!00}{10\!\cdots\!27}a^{17}+\frac{14\!\cdots\!22}{10\!\cdots\!27}a^{16}+\frac{47\!\cdots\!59}{10\!\cdots\!27}a^{15}+\frac{22\!\cdots\!91}{10\!\cdots\!27}a^{14}-\frac{21\!\cdots\!85}{10\!\cdots\!27}a^{13}+\frac{93\!\cdots\!97}{10\!\cdots\!27}a^{12}+\frac{37\!\cdots\!61}{10\!\cdots\!27}a^{11}+\frac{13\!\cdots\!18}{10\!\cdots\!27}a^{10}+\frac{12\!\cdots\!48}{10\!\cdots\!27}a^{9}+\frac{26\!\cdots\!62}{10\!\cdots\!27}a^{8}-\frac{43\!\cdots\!97}{10\!\cdots\!27}a^{7}-\frac{32\!\cdots\!00}{10\!\cdots\!27}a^{6}-\frac{16\!\cdots\!66}{10\!\cdots\!27}a^{5}+\frac{39\!\cdots\!08}{10\!\cdots\!27}a^{4}-\frac{22\!\cdots\!33}{10\!\cdots\!27}a^{3}+\frac{39\!\cdots\!48}{10\!\cdots\!27}a^{2}-\frac{24\!\cdots\!93}{10\!\cdots\!27}a-\frac{52\!\cdots\!73}{10\!\cdots\!27}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $28$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^29 - x^28 - 448*x^27 + 107*x^26 + 76138*x^25 - 43560*x^24 - 6896718*x^23 + 8492788*x^22 + 374467531*x^21 - 737137472*x^20 - 12707566814*x^19 + 34389111341*x^18 + 270515586354*x^17 - 939536322456*x^16 - 3528471156331*x^15 + 15628114907220*x^14 + 26518327124887*x^13 - 161458375653531*x^12 - 93674380846644*x^11 + 1045971567643780*x^10 - 54383106047402*x^9 - 4238937042324143*x^8 + 1725076964802557*x^7 + 10520005444822970*x^6 - 6101874655993302*x^5 - 15103434975606529*x^4 + 9152562248392343*x^3 + 10944332007104174*x^2 - 5127494290967802*x - 2711408412652309);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{29}$ (as 29T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 29
The 29 conjugacy class representatives for $C_{29}$
Character table for $C_{29}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$ $29$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(929\) Copy content Toggle raw display Deg $29$$29$$1$$28$