Properties

Label 28.28.146...821.1
Degree $28$
Signature $[28, 0]$
Discriminant $1.460\times 10^{46}$
Root discriminant \(44.54\)
Ramified primes $3,29$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{28}$ (as 28T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1)
 
gp: K = bnfinit(y^28 - y^27 - 28*y^26 + 28*y^25 + 349*y^24 - 349*y^23 - 2551*y^22 + 2551*y^21 + 12123*y^20 - 12123*y^19 - 39236*y^18 + 39236*y^17 + 88045*y^16 - 88045*y^15 - 136763*y^14 + 136763*y^13 + 144247*y^12 - 144247*y^11 - 99295*y^10 + 99295*y^9 + 41703*y^8 - 41703*y^7 - 9569*y^6 + 9569*y^5 + 987*y^4 - 987*y^3 - 28*y^2 + 28*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1)
 

\( x^{28} - x^{27} - 28 x^{26} + 28 x^{25} + 349 x^{24} - 349 x^{23} - 2551 x^{22} + 2551 x^{21} + 12123 x^{20} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[28, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14603047886206093768209337615200705673567789821\) \(\medspace = 3^{14}\cdot 29^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(44.54\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}29^{27/28}\approx 44.53793994501929$
Ramified primes:   \(3\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{29}) \)
$\card{ \Gal(K/\Q) }$:  $28$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(87=3\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{87}(64,·)$, $\chi_{87}(1,·)$, $\chi_{87}(2,·)$, $\chi_{87}(67,·)$, $\chi_{87}(4,·)$, $\chi_{87}(68,·)$, $\chi_{87}(7,·)$, $\chi_{87}(8,·)$, $\chi_{87}(11,·)$, $\chi_{87}(13,·)$, $\chi_{87}(14,·)$, $\chi_{87}(77,·)$, $\chi_{87}(16,·)$, $\chi_{87}(17,·)$, $\chi_{87}(82,·)$, $\chi_{87}(22,·)$, $\chi_{87}(25,·)$, $\chi_{87}(26,·)$, $\chi_{87}(28,·)$, $\chi_{87}(32,·)$, $\chi_{87}(34,·)$, $\chi_{87}(41,·)$, $\chi_{87}(44,·)$, $\chi_{87}(47,·)$, $\chi_{87}(49,·)$, $\chi_{87}(50,·)$, $\chi_{87}(52,·)$, $\chi_{87}(56,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $27$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+1716a^{4}-144a^{2}+2$, $a^{18}-18a^{16}+135a^{14}-546a^{12}+1287a^{10}-1782a^{8}+1386a^{6}-540a^{4}+81a^{2}-2$, $a^{22}-22a^{20}+209a^{18}-1122a^{16}+3740a^{14}-8008a^{12}+11011a^{10}-9438a^{8}+a^{7}+4719a^{6}-7a^{5}-1210a^{4}+14a^{3}+121a^{2}-7a-2$, $a^{27}-28a^{25}+a^{24}+349a^{23}-25a^{22}-2551a^{21}+274a^{20}+12124a^{19}-1728a^{18}-39255a^{17}+6917a^{16}+88197a^{15}-18277a^{14}-137428a^{13}+32111a^{12}+145976a^{11}-36840a^{10}-102012a^{9}+26355a^{8}+44211a^{7}-10780a^{6}-10823a^{5}+2148a^{4}+1272a^{3}-143a^{2}-46a-1$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a$, $a^{6}-6a^{4}+a^{3}+9a^{2}-3a-1$, $a^{15}-15a^{13}+90a^{11}-275a^{9}+450a^{7}-378a^{5}+140a^{3}-15a+1$, $a^{22}-22a^{20}+209a^{18}-1122a^{16}+3740a^{14}-8008a^{12}+11011a^{10}-9438a^{8}+a^{7}+4719a^{6}-7a^{5}-1210a^{4}+14a^{3}+121a^{2}-7a-3$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+2$, $a^{25}-25a^{23}+274a^{21}-1729a^{19}+6936a^{17}+a^{16}-18428a^{15}-16a^{14}+32761a^{13}+103a^{12}-38480a^{11}-340a^{10}+28808a^{9}+606a^{8}-12883a^{7}-560a^{6}+3108a^{5}+232a^{4}-356a^{3}-32a^{2}+17a+1$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+3$, $a^{15}-15a^{13}+90a^{11}-274a^{9}+441a^{7}-351a^{5}+111a^{3}-9a$, $a^{15}-15a^{13}+90a^{11}-275a^{9}+450a^{7}-378a^{5}+140a^{3}-15a$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+2940a^{13}-5733a^{11}+7007a^{9}+a^{8}-5148a^{7}-8a^{6}+2079a^{5}+20a^{4}-385a^{3}-16a^{2}+21a+2$, $a^{27}-27a^{25}+324a^{23}-2277a^{21}+10395a^{19}-32319a^{17}+69768a^{15}-104652a^{13}+107406a^{11}-72930a^{9}+30888a^{7}-7371a^{5}+819a^{3}+a^{2}-27a-2$, $a^{4}-4a^{2}+2$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+2$, $a^{26}-26a^{24}+299a^{22}-2002a^{20}+8645a^{18}-25194a^{16}+50388a^{14}-68952a^{12}+63206a^{10}-37180a^{8}+13013a^{6}-2366a^{4}+169a^{2}-2$, $a^{23}-23a^{21}+230a^{19}-1311a^{17}+4692a^{15}-10948a^{13}+16744a^{11}-16445a^{9}+9867a^{7}+a^{6}-3289a^{5}-6a^{4}+506a^{3}+9a^{2}-23a-2$, $a^{17}-17a^{15}+119a^{13}+a^{12}-442a^{11}-12a^{10}+935a^{9}+54a^{8}-1122a^{7}-112a^{6}+714a^{5}+105a^{4}-204a^{3}-36a^{2}+17a+2$, $a^{27}-28a^{25}+a^{24}+349a^{23}-25a^{22}-2551a^{21}+274a^{20}+12123a^{19}-1728a^{18}-39236a^{17}+6917a^{16}+88045a^{15}-18277a^{14}-136763a^{13}+32111a^{12}+144247a^{11}-36841a^{10}-99295a^{9}+26365a^{8}+41703a^{7}-10815a^{6}-9569a^{5}+2198a^{4}+987a^{3}-168a^{2}-28a+1$, $a^{27}-28a^{25}+a^{24}+349a^{23}-25a^{22}-2551a^{21}+274a^{20}+12123a^{19}-1728a^{18}-39236a^{17}+6917a^{16}+88045a^{15}-18277a^{14}-136763a^{13}+32111a^{12}+144247a^{11}-36841a^{10}-99295a^{9}+26365a^{8}+41703a^{7}-10815a^{6}-9568a^{5}+2198a^{4}+982a^{3}-168a^{2}-22a+1$, $a^{15}+a^{14}-15a^{13}-14a^{12}+90a^{11}+77a^{10}-275a^{9}-210a^{8}+450a^{7}+294a^{6}-378a^{5}-196a^{4}+140a^{3}+49a^{2}-15a-2$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+a^{9}+19305a^{8}-9a^{7}-8008a^{6}+28a^{5}+1716a^{4}-35a^{3}-144a^{2}+14a+2$, $a^{19}-19a^{17}+152a^{15}-665a^{13}+1729a^{11}-2717a^{9}+2508a^{7}-1254a^{5}+284a^{3}-16a$, $a^{24}-25a^{22}+274a^{20}-1729a^{18}+6936a^{16}+a^{15}-18428a^{14}-15a^{13}+32760a^{12}+89a^{11}-38467a^{10}-264a^{9}+28743a^{8}+406a^{7}-12727a^{6}-301a^{5}+2926a^{4}+85a^{3}-265a^{2}-4a+3$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+a^{5}+1716a^{4}-5a^{3}-144a^{2}+5a+2$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 114482618238342.14 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{28}\cdot(2\pi)^{0}\cdot 114482618238342.14 \cdot 1}{2\cdot\sqrt{14603047886206093768209337615200705673567789821}}\cr\approx \mathstrut & 0.127153313363501 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - x^27 - 28*x^26 + 28*x^25 + 349*x^24 - 349*x^23 - 2551*x^22 + 2551*x^21 + 12123*x^20 - 12123*x^19 - 39236*x^18 + 39236*x^17 + 88045*x^16 - 88045*x^15 - 136763*x^14 + 136763*x^13 + 144247*x^12 - 144247*x^11 - 99295*x^10 + 99295*x^9 + 41703*x^8 - 41703*x^7 - 9569*x^6 + 9569*x^5 + 987*x^4 - 987*x^3 - 28*x^2 + 28*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{28}$ (as 28T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 28
The 28 conjugacy class representatives for $C_{28}$
Character table for $C_{28}$ is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), 4.4.219501.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $28$ R ${\href{/padicField/5.7.0.1}{7} }^{4}$ ${\href{/padicField/7.7.0.1}{7} }^{4}$ $28$ ${\href{/padicField/13.14.0.1}{14} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{7}$ $28$ ${\href{/padicField/23.14.0.1}{14} }^{2}$ R $28$ $28$ ${\href{/padicField/41.4.0.1}{4} }^{7}$ $28$ $28$ ${\href{/padicField/53.14.0.1}{14} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{14}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $28$$2$$14$$14$
\(29\) Copy content Toggle raw display Deg $28$$28$$1$$27$