Properties

Label 28.0.714...129.1
Degree $28$
Signature $[0, 14]$
Discriminant $7.140\times 10^{49}$
Root discriminant \(60.32\)
Ramified primes $7,29$
Class number $25984$ (GRH)
Class group [2, 4, 4, 812] (GRH)
Galois group $C_2\times C_{14}$ (as 28T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384)
 
gp: K = bnfinit(y^28 - y^27 + 41*y^26 - 34*y^25 + 814*y^24 - 569*y^23 + 10073*y^22 - 5894*y^21 + 85446*y^20 - 41430*y^19 + 517766*y^18 - 204124*y^17 + 2278084*y^16 - 713493*y^15 + 7270037*y^14 - 1746022*y^13 + 16581844*y^12 - 2930752*y^11 + 26206720*y^10 - 3163168*y^9 + 27305280*y^8 - 2133504*y^7 + 17228288*y^6 - 594944*y^5 + 5748736*y^4 - 229376*y^3 + 745472*y^2 + 57344*y + 16384, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384)
 

\( x^{28} - x^{27} + 41 x^{26} - 34 x^{25} + 814 x^{24} - 569 x^{23} + 10073 x^{22} - 5894 x^{21} + \cdots + 16384 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $28$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(71403665296191917297019015087709113341743884283129\) \(\medspace = 7^{14}\cdot 29^{26}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(60.32\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{1/2}29^{13/14}\approx 60.32398427367838$
Ramified primes:   \(7\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $28$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(203=7\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{203}(64,·)$, $\chi_{203}(1,·)$, $\chi_{203}(132,·)$, $\chi_{203}(197,·)$, $\chi_{203}(6,·)$, $\chi_{203}(71,·)$, $\chi_{203}(202,·)$, $\chi_{203}(139,·)$, $\chi_{203}(13,·)$, $\chi_{203}(78,·)$, $\chi_{203}(141,·)$, $\chi_{203}(120,·)$, $\chi_{203}(146,·)$, $\chi_{203}(83,·)$, $\chi_{203}(20,·)$, $\chi_{203}(22,·)$, $\chi_{203}(92,·)$, $\chi_{203}(34,·)$, $\chi_{203}(36,·)$, $\chi_{203}(167,·)$, $\chi_{203}(169,·)$, $\chi_{203}(111,·)$, $\chi_{203}(181,·)$, $\chi_{203}(183,·)$, $\chi_{203}(62,·)$, $\chi_{203}(57,·)$, $\chi_{203}(125,·)$, $\chi_{203}(190,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{8192}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{4}a^{11}+\frac{1}{4}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{17}-\frac{1}{8}a^{16}+\frac{1}{8}a^{15}-\frac{1}{4}a^{14}-\frac{1}{4}a^{13}-\frac{1}{8}a^{12}+\frac{1}{8}a^{11}+\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{3}{8}a^{4}-\frac{3}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{18}-\frac{1}{16}a^{17}+\frac{1}{16}a^{16}-\frac{1}{8}a^{15}-\frac{1}{8}a^{14}-\frac{1}{16}a^{13}-\frac{7}{16}a^{12}+\frac{1}{8}a^{11}+\frac{3}{8}a^{10}+\frac{1}{8}a^{9}+\frac{3}{8}a^{8}+\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{5}{16}a^{5}+\frac{5}{16}a^{4}+\frac{1}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{32}a^{19}-\frac{1}{32}a^{18}+\frac{1}{32}a^{17}-\frac{1}{16}a^{16}-\frac{1}{16}a^{15}-\frac{1}{32}a^{14}+\frac{9}{32}a^{13}-\frac{7}{16}a^{12}+\frac{3}{16}a^{11}+\frac{1}{16}a^{10}-\frac{5}{16}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{5}{32}a^{6}-\frac{11}{32}a^{5}+\frac{1}{16}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{64}a^{20}-\frac{1}{64}a^{19}+\frac{1}{64}a^{18}-\frac{1}{32}a^{17}-\frac{1}{32}a^{16}-\frac{1}{64}a^{15}+\frac{9}{64}a^{14}-\frac{7}{32}a^{13}+\frac{3}{32}a^{12}-\frac{15}{32}a^{11}+\frac{11}{32}a^{10}-\frac{7}{16}a^{9}-\frac{7}{16}a^{8}-\frac{5}{64}a^{7}-\frac{11}{64}a^{6}+\frac{1}{32}a^{5}-\frac{3}{16}a^{4}+\frac{3}{8}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{128}a^{21}-\frac{1}{128}a^{20}+\frac{1}{128}a^{19}-\frac{1}{64}a^{18}-\frac{1}{64}a^{17}-\frac{1}{128}a^{16}+\frac{9}{128}a^{15}-\frac{7}{64}a^{14}+\frac{3}{64}a^{13}-\frac{15}{64}a^{12}+\frac{11}{64}a^{11}+\frac{9}{32}a^{10}-\frac{7}{32}a^{9}+\frac{59}{128}a^{8}+\frac{53}{128}a^{7}-\frac{31}{64}a^{6}-\frac{3}{32}a^{5}+\frac{3}{16}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{256}a^{22}-\frac{1}{256}a^{21}+\frac{1}{256}a^{20}-\frac{1}{128}a^{19}-\frac{1}{128}a^{18}-\frac{1}{256}a^{17}+\frac{9}{256}a^{16}-\frac{7}{128}a^{15}+\frac{3}{128}a^{14}-\frac{15}{128}a^{13}+\frac{11}{128}a^{12}-\frac{23}{64}a^{11}-\frac{7}{64}a^{10}+\frac{59}{256}a^{9}-\frac{75}{256}a^{8}-\frac{31}{128}a^{7}+\frac{29}{64}a^{6}-\frac{13}{32}a^{5}+\frac{1}{8}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{512}a^{23}-\frac{1}{512}a^{22}+\frac{1}{512}a^{21}-\frac{1}{256}a^{20}-\frac{1}{256}a^{19}-\frac{1}{512}a^{18}+\frac{9}{512}a^{17}-\frac{7}{256}a^{16}+\frac{3}{256}a^{15}-\frac{15}{256}a^{14}+\frac{11}{256}a^{13}-\frac{23}{128}a^{12}-\frac{7}{128}a^{11}-\frac{197}{512}a^{10}+\frac{181}{512}a^{9}+\frac{97}{256}a^{8}-\frac{35}{128}a^{7}-\frac{13}{64}a^{6}+\frac{1}{16}a^{5}-\frac{1}{4}a^{4}-\frac{3}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{1024}a^{24}-\frac{1}{1024}a^{23}+\frac{1}{1024}a^{22}-\frac{1}{512}a^{21}-\frac{1}{512}a^{20}-\frac{1}{1024}a^{19}+\frac{9}{1024}a^{18}-\frac{7}{512}a^{17}+\frac{3}{512}a^{16}-\frac{15}{512}a^{15}+\frac{11}{512}a^{14}-\frac{23}{256}a^{13}-\frac{7}{256}a^{12}-\frac{197}{1024}a^{11}-\frac{331}{1024}a^{10}-\frac{159}{512}a^{9}-\frac{35}{256}a^{8}+\frac{51}{128}a^{7}+\frac{1}{32}a^{6}-\frac{1}{8}a^{5}+\frac{5}{16}a^{4}+\frac{1}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{2048}a^{25}-\frac{1}{2048}a^{24}+\frac{1}{2048}a^{23}-\frac{1}{1024}a^{22}-\frac{1}{1024}a^{21}-\frac{1}{2048}a^{20}+\frac{9}{2048}a^{19}-\frac{7}{1024}a^{18}+\frac{3}{1024}a^{17}-\frac{15}{1024}a^{16}+\frac{11}{1024}a^{15}-\frac{23}{512}a^{14}-\frac{7}{512}a^{13}-\frac{197}{2048}a^{12}-\frac{331}{2048}a^{11}-\frac{159}{1024}a^{10}-\frac{35}{512}a^{9}+\frac{51}{256}a^{8}-\frac{31}{64}a^{7}+\frac{7}{16}a^{6}-\frac{11}{32}a^{5}+\frac{1}{16}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{4096}a^{26}-\frac{1}{4096}a^{25}+\frac{1}{4096}a^{24}-\frac{1}{2048}a^{23}-\frac{1}{2048}a^{22}-\frac{1}{4096}a^{21}+\frac{9}{4096}a^{20}-\frac{7}{2048}a^{19}+\frac{3}{2048}a^{18}-\frac{15}{2048}a^{17}+\frac{11}{2048}a^{16}-\frac{23}{1024}a^{15}-\frac{7}{1024}a^{14}-\frac{197}{4096}a^{13}+\frac{1717}{4096}a^{12}+\frac{865}{2048}a^{11}-\frac{35}{1024}a^{10}+\frac{51}{512}a^{9}-\frac{31}{128}a^{8}-\frac{9}{32}a^{7}+\frac{21}{64}a^{6}+\frac{1}{32}a^{5}+\frac{5}{16}a^{4}-\frac{1}{8}a^{3}$, $\frac{1}{15\!\cdots\!92}a^{27}+\frac{51\!\cdots\!53}{15\!\cdots\!92}a^{26}+\frac{18\!\cdots\!35}{15\!\cdots\!92}a^{25}-\frac{31\!\cdots\!39}{19\!\cdots\!24}a^{24}-\frac{14\!\cdots\!95}{77\!\cdots\!96}a^{23}-\frac{45\!\cdots\!09}{15\!\cdots\!92}a^{22}-\frac{37\!\cdots\!25}{15\!\cdots\!92}a^{21}-\frac{29\!\cdots\!53}{38\!\cdots\!48}a^{20}-\frac{67\!\cdots\!11}{77\!\cdots\!96}a^{19}-\frac{75\!\cdots\!49}{77\!\cdots\!96}a^{18}+\frac{60\!\cdots\!73}{77\!\cdots\!96}a^{17}-\frac{19\!\cdots\!53}{24\!\cdots\!28}a^{16}+\frac{87\!\cdots\!35}{38\!\cdots\!48}a^{15}-\frac{36\!\cdots\!13}{91\!\cdots\!76}a^{14}+\frac{77\!\cdots\!63}{15\!\cdots\!92}a^{13}-\frac{15\!\cdots\!03}{38\!\cdots\!48}a^{12}+\frac{41\!\cdots\!33}{56\!\cdots\!36}a^{11}-\frac{57\!\cdots\!13}{24\!\cdots\!28}a^{10}-\frac{69\!\cdots\!11}{96\!\cdots\!12}a^{9}-\frac{38\!\cdots\!59}{24\!\cdots\!28}a^{8}-\frac{27\!\cdots\!45}{12\!\cdots\!64}a^{7}-\frac{40\!\cdots\!55}{12\!\cdots\!64}a^{6}-\frac{46\!\cdots\!41}{15\!\cdots\!08}a^{5}-\frac{13\!\cdots\!17}{30\!\cdots\!16}a^{4}-\frac{75\!\cdots\!93}{15\!\cdots\!08}a^{3}-\frac{13\!\cdots\!67}{75\!\cdots\!04}a^{2}-\frac{15\!\cdots\!95}{37\!\cdots\!02}a+\frac{11\!\cdots\!88}{18\!\cdots\!51}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{4}\times C_{4}\times C_{812}$, which has order $25984$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{64\!\cdots\!03}{12\!\cdots\!64}a^{27}-\frac{32\!\cdots\!35}{60\!\cdots\!32}a^{26}+\frac{26\!\cdots\!07}{12\!\cdots\!64}a^{25}-\frac{21\!\cdots\!87}{12\!\cdots\!64}a^{24}+\frac{51\!\cdots\!41}{12\!\cdots\!64}a^{23}-\frac{17\!\cdots\!17}{60\!\cdots\!32}a^{22}+\frac{63\!\cdots\!11}{12\!\cdots\!64}a^{21}-\frac{36\!\cdots\!79}{12\!\cdots\!64}a^{20}+\frac{26\!\cdots\!25}{60\!\cdots\!32}a^{19}-\frac{25\!\cdots\!39}{12\!\cdots\!64}a^{18}+\frac{78\!\cdots\!09}{30\!\cdots\!16}a^{17}-\frac{15\!\cdots\!21}{15\!\cdots\!08}a^{16}+\frac{67\!\cdots\!75}{60\!\cdots\!32}a^{15}-\frac{59\!\cdots\!77}{17\!\cdots\!48}a^{14}+\frac{52\!\cdots\!41}{15\!\cdots\!08}a^{13}-\frac{14\!\cdots\!93}{18\!\cdots\!51}a^{12}+\frac{84\!\cdots\!17}{11\!\cdots\!03}a^{11}-\frac{21\!\cdots\!03}{18\!\cdots\!51}a^{10}+\frac{21\!\cdots\!82}{18\!\cdots\!51}a^{9}-\frac{16\!\cdots\!60}{18\!\cdots\!51}a^{8}+\frac{20\!\cdots\!64}{18\!\cdots\!51}a^{7}-\frac{19\!\cdots\!75}{12\!\cdots\!64}a^{6}+\frac{10\!\cdots\!96}{18\!\cdots\!51}a^{5}+\frac{83\!\cdots\!21}{15\!\cdots\!08}a^{4}+\frac{25\!\cdots\!28}{18\!\cdots\!51}a^{3}+\frac{32\!\cdots\!09}{75\!\cdots\!04}a^{2}+\frac{11\!\cdots\!84}{18\!\cdots\!51}a+\frac{37\!\cdots\!50}{18\!\cdots\!51}$, $\frac{19\!\cdots\!39}{75\!\cdots\!04}a^{27}+\frac{26\!\cdots\!25}{60\!\cdots\!32}a^{26}+\frac{29\!\cdots\!07}{30\!\cdots\!16}a^{25}+\frac{11\!\cdots\!17}{60\!\cdots\!32}a^{24}+\frac{11\!\cdots\!35}{60\!\cdots\!32}a^{23}+\frac{24\!\cdots\!63}{60\!\cdots\!32}a^{22}+\frac{65\!\cdots\!51}{30\!\cdots\!16}a^{21}+\frac{31\!\cdots\!13}{60\!\cdots\!32}a^{20}+\frac{10\!\cdots\!27}{60\!\cdots\!32}a^{19}+\frac{13\!\cdots\!09}{30\!\cdots\!16}a^{18}+\frac{62\!\cdots\!35}{60\!\cdots\!32}a^{17}+\frac{42\!\cdots\!81}{15\!\cdots\!08}a^{16}+\frac{66\!\cdots\!17}{15\!\cdots\!08}a^{15}+\frac{22\!\cdots\!85}{17\!\cdots\!48}a^{14}+\frac{20\!\cdots\!45}{15\!\cdots\!08}a^{13}+\frac{30\!\cdots\!39}{75\!\cdots\!04}a^{12}+\frac{34\!\cdots\!34}{11\!\cdots\!03}a^{11}+\frac{16\!\cdots\!06}{18\!\cdots\!51}a^{10}+\frac{95\!\cdots\!70}{18\!\cdots\!51}a^{9}+\frac{25\!\cdots\!40}{18\!\cdots\!51}a^{8}+\frac{10\!\cdots\!12}{18\!\cdots\!51}a^{7}+\frac{23\!\cdots\!88}{18\!\cdots\!51}a^{6}+\frac{23\!\cdots\!71}{60\!\cdots\!32}a^{5}+\frac{12\!\cdots\!28}{18\!\cdots\!51}a^{4}+\frac{27\!\cdots\!37}{15\!\cdots\!08}a^{3}+\frac{29\!\cdots\!60}{18\!\cdots\!51}a^{2}+\frac{63\!\cdots\!83}{37\!\cdots\!02}a+\frac{34\!\cdots\!79}{18\!\cdots\!51}$, $\frac{12\!\cdots\!21}{15\!\cdots\!92}a^{27}-\frac{87\!\cdots\!39}{15\!\cdots\!92}a^{26}+\frac{51\!\cdots\!59}{15\!\cdots\!92}a^{25}-\frac{33\!\cdots\!89}{19\!\cdots\!24}a^{24}+\frac{50\!\cdots\!75}{77\!\cdots\!96}a^{23}-\frac{41\!\cdots\!81}{15\!\cdots\!92}a^{22}+\frac{12\!\cdots\!03}{15\!\cdots\!92}a^{21}-\frac{94\!\cdots\!45}{38\!\cdots\!48}a^{20}+\frac{50\!\cdots\!99}{77\!\cdots\!96}a^{19}-\frac{11\!\cdots\!85}{77\!\cdots\!96}a^{18}+\frac{29\!\cdots\!41}{77\!\cdots\!96}a^{17}-\frac{28\!\cdots\!51}{48\!\cdots\!56}a^{16}+\frac{63\!\cdots\!21}{38\!\cdots\!48}a^{15}-\frac{13\!\cdots\!49}{91\!\cdots\!76}a^{14}+\frac{77\!\cdots\!19}{15\!\cdots\!92}a^{13}-\frac{95\!\cdots\!11}{38\!\cdots\!48}a^{12}+\frac{24\!\cdots\!87}{22\!\cdots\!44}a^{11}-\frac{52\!\cdots\!15}{19\!\cdots\!24}a^{10}+\frac{36\!\cdots\!33}{24\!\cdots\!28}a^{9}-\frac{94\!\cdots\!23}{30\!\cdots\!16}a^{8}+\frac{80\!\cdots\!75}{60\!\cdots\!32}a^{7}-\frac{11\!\cdots\!42}{18\!\cdots\!51}a^{6}+\frac{18\!\cdots\!83}{30\!\cdots\!16}a^{5}-\frac{15\!\cdots\!15}{75\!\cdots\!04}a^{4}+\frac{93\!\cdots\!43}{75\!\cdots\!04}a^{3}+\frac{79\!\cdots\!93}{37\!\cdots\!02}a^{2}+\frac{73\!\cdots\!03}{18\!\cdots\!51}a+\frac{27\!\cdots\!83}{18\!\cdots\!51}$, $\frac{34\!\cdots\!19}{48\!\cdots\!56}a^{27}-\frac{16\!\cdots\!23}{24\!\cdots\!28}a^{26}+\frac{13\!\cdots\!27}{48\!\cdots\!56}a^{25}-\frac{10\!\cdots\!31}{48\!\cdots\!56}a^{24}+\frac{27\!\cdots\!55}{48\!\cdots\!56}a^{23}-\frac{88\!\cdots\!55}{24\!\cdots\!28}a^{22}+\frac{16\!\cdots\!21}{24\!\cdots\!28}a^{21}-\frac{17\!\cdots\!65}{48\!\cdots\!56}a^{20}+\frac{17\!\cdots\!33}{30\!\cdots\!16}a^{19}-\frac{60\!\cdots\!91}{24\!\cdots\!28}a^{18}+\frac{85\!\cdots\!41}{24\!\cdots\!28}a^{17}-\frac{57\!\cdots\!39}{48\!\cdots\!56}a^{16}+\frac{36\!\cdots\!07}{24\!\cdots\!28}a^{15}-\frac{10\!\cdots\!09}{28\!\cdots\!68}a^{14}+\frac{11\!\cdots\!87}{24\!\cdots\!28}a^{13}-\frac{99\!\cdots\!95}{12\!\cdots\!64}a^{12}+\frac{46\!\cdots\!17}{44\!\cdots\!12}a^{11}-\frac{16\!\cdots\!27}{15\!\cdots\!08}a^{10}+\frac{23\!\cdots\!97}{15\!\cdots\!08}a^{9}-\frac{26\!\cdots\!77}{48\!\cdots\!56}a^{8}+\frac{28\!\cdots\!24}{18\!\cdots\!51}a^{7}+\frac{79\!\cdots\!81}{15\!\cdots\!08}a^{6}+\frac{15\!\cdots\!04}{18\!\cdots\!51}a^{5}+\frac{95\!\cdots\!75}{75\!\cdots\!04}a^{4}+\frac{39\!\cdots\!32}{18\!\cdots\!51}a^{3}+\frac{13\!\cdots\!80}{18\!\cdots\!51}a^{2}+\frac{18\!\cdots\!32}{18\!\cdots\!51}a+\frac{36\!\cdots\!06}{18\!\cdots\!51}$, $\frac{11\!\cdots\!03}{75\!\cdots\!04}a^{27}+\frac{60\!\cdots\!81}{18\!\cdots\!51}a^{26}+\frac{11\!\cdots\!12}{18\!\cdots\!51}a^{25}+\frac{20\!\cdots\!37}{15\!\cdots\!08}a^{24}+\frac{84\!\cdots\!69}{75\!\cdots\!04}a^{23}+\frac{43\!\cdots\!49}{15\!\cdots\!08}a^{22}+\frac{19\!\cdots\!01}{15\!\cdots\!08}a^{21}+\frac{55\!\cdots\!59}{15\!\cdots\!08}a^{20}+\frac{80\!\cdots\!37}{75\!\cdots\!04}a^{19}+\frac{47\!\cdots\!35}{15\!\cdots\!08}a^{18}+\frac{93\!\cdots\!29}{15\!\cdots\!08}a^{17}+\frac{14\!\cdots\!17}{75\!\cdots\!04}a^{16}+\frac{39\!\cdots\!45}{15\!\cdots\!08}a^{15}+\frac{37\!\cdots\!83}{44\!\cdots\!12}a^{14}+\frac{31\!\cdots\!21}{37\!\cdots\!02}a^{13}+\frac{50\!\cdots\!14}{18\!\cdots\!51}a^{12}+\frac{20\!\cdots\!48}{11\!\cdots\!03}a^{11}+\frac{11\!\cdots\!52}{18\!\cdots\!51}a^{10}+\frac{55\!\cdots\!28}{18\!\cdots\!51}a^{9}+\frac{16\!\cdots\!12}{18\!\cdots\!51}a^{8}+\frac{60\!\cdots\!60}{18\!\cdots\!51}a^{7}+\frac{15\!\cdots\!68}{18\!\cdots\!51}a^{6}+\frac{42\!\cdots\!08}{18\!\cdots\!51}a^{5}+\frac{82\!\cdots\!16}{18\!\cdots\!51}a^{4}+\frac{16\!\cdots\!29}{15\!\cdots\!08}a^{3}+\frac{18\!\cdots\!00}{18\!\cdots\!51}a^{2}+\frac{39\!\cdots\!85}{37\!\cdots\!02}a+\frac{98\!\cdots\!24}{18\!\cdots\!51}$, $\frac{30\!\cdots\!85}{77\!\cdots\!96}a^{27}-\frac{38\!\cdots\!51}{38\!\cdots\!48}a^{26}+\frac{32\!\cdots\!81}{19\!\cdots\!24}a^{25}-\frac{29\!\cdots\!97}{77\!\cdots\!96}a^{24}+\frac{13\!\cdots\!55}{38\!\cdots\!48}a^{23}-\frac{54\!\cdots\!35}{77\!\cdots\!96}a^{22}+\frac{16\!\cdots\!61}{38\!\cdots\!48}a^{21}-\frac{63\!\cdots\!57}{77\!\cdots\!96}a^{20}+\frac{14\!\cdots\!29}{38\!\cdots\!48}a^{19}-\frac{15\!\cdots\!49}{24\!\cdots\!28}a^{18}+\frac{13\!\cdots\!87}{60\!\cdots\!32}a^{17}-\frac{14\!\cdots\!31}{38\!\cdots\!48}a^{16}+\frac{19\!\cdots\!05}{19\!\cdots\!24}a^{15}-\frac{69\!\cdots\!85}{45\!\cdots\!88}a^{14}+\frac{12\!\cdots\!03}{38\!\cdots\!48}a^{13}-\frac{34\!\cdots\!37}{77\!\cdots\!96}a^{12}+\frac{10\!\cdots\!65}{14\!\cdots\!84}a^{11}-\frac{45\!\cdots\!55}{48\!\cdots\!56}a^{10}+\frac{27\!\cdots\!01}{24\!\cdots\!28}a^{9}-\frac{31\!\cdots\!57}{24\!\cdots\!28}a^{8}+\frac{27\!\cdots\!47}{24\!\cdots\!28}a^{7}-\frac{16\!\cdots\!95}{15\!\cdots\!08}a^{6}+\frac{35\!\cdots\!75}{60\!\cdots\!32}a^{5}-\frac{13\!\cdots\!73}{30\!\cdots\!16}a^{4}+\frac{62\!\cdots\!49}{75\!\cdots\!04}a^{3}-\frac{10\!\cdots\!15}{18\!\cdots\!51}a^{2}-\frac{11\!\cdots\!97}{37\!\cdots\!02}a+\frac{13\!\cdots\!94}{18\!\cdots\!51}$, $\frac{18\!\cdots\!37}{15\!\cdots\!92}a^{27}+\frac{65\!\cdots\!79}{15\!\cdots\!92}a^{26}+\frac{72\!\cdots\!09}{15\!\cdots\!92}a^{25}+\frac{19\!\cdots\!51}{77\!\cdots\!96}a^{24}+\frac{70\!\cdots\!51}{77\!\cdots\!96}a^{23}+\frac{94\!\cdots\!59}{15\!\cdots\!92}a^{22}+\frac{17\!\cdots\!13}{15\!\cdots\!92}a^{21}+\frac{68\!\cdots\!01}{77\!\cdots\!96}a^{20}+\frac{72\!\cdots\!83}{77\!\cdots\!96}a^{19}+\frac{65\!\cdots\!61}{77\!\cdots\!96}a^{18}+\frac{44\!\cdots\!03}{77\!\cdots\!96}a^{17}+\frac{21\!\cdots\!37}{38\!\cdots\!48}a^{16}+\frac{97\!\cdots\!89}{38\!\cdots\!48}a^{15}+\frac{24\!\cdots\!91}{91\!\cdots\!76}a^{14}+\frac{12\!\cdots\!01}{15\!\cdots\!92}a^{13}+\frac{69\!\cdots\!37}{77\!\cdots\!96}a^{12}+\frac{43\!\cdots\!29}{22\!\cdots\!44}a^{11}+\frac{41\!\cdots\!99}{19\!\cdots\!24}a^{10}+\frac{18\!\cdots\!13}{60\!\cdots\!32}a^{9}+\frac{16\!\cdots\!69}{48\!\cdots\!56}a^{8}+\frac{82\!\cdots\!21}{24\!\cdots\!28}a^{7}+\frac{27\!\cdots\!11}{75\!\cdots\!04}a^{6}+\frac{69\!\cdots\!85}{30\!\cdots\!16}a^{5}+\frac{66\!\cdots\!95}{30\!\cdots\!16}a^{4}+\frac{12\!\cdots\!73}{15\!\cdots\!08}a^{3}+\frac{44\!\cdots\!85}{75\!\cdots\!04}a^{2}+\frac{24\!\cdots\!53}{37\!\cdots\!02}a+\frac{27\!\cdots\!64}{18\!\cdots\!51}$, $\frac{44\!\cdots\!81}{15\!\cdots\!08}a^{27}-\frac{46\!\cdots\!05}{15\!\cdots\!08}a^{26}+\frac{36\!\cdots\!03}{30\!\cdots\!16}a^{25}-\frac{15\!\cdots\!39}{15\!\cdots\!08}a^{24}+\frac{70\!\cdots\!49}{30\!\cdots\!16}a^{23}-\frac{51\!\cdots\!51}{30\!\cdots\!16}a^{22}+\frac{86\!\cdots\!29}{30\!\cdots\!16}a^{21}-\frac{26\!\cdots\!33}{15\!\cdots\!08}a^{20}+\frac{71\!\cdots\!05}{30\!\cdots\!16}a^{19}-\frac{36\!\cdots\!01}{30\!\cdots\!16}a^{18}+\frac{21\!\cdots\!57}{15\!\cdots\!08}a^{17}-\frac{17\!\cdots\!97}{30\!\cdots\!16}a^{16}+\frac{45\!\cdots\!65}{75\!\cdots\!04}a^{15}-\frac{17\!\cdots\!01}{88\!\cdots\!24}a^{14}+\frac{13\!\cdots\!93}{75\!\cdots\!04}a^{13}-\frac{17\!\cdots\!91}{37\!\cdots\!02}a^{12}+\frac{44\!\cdots\!02}{11\!\cdots\!03}a^{11}-\frac{13\!\cdots\!48}{18\!\cdots\!51}a^{10}+\frac{11\!\cdots\!72}{18\!\cdots\!51}a^{9}-\frac{11\!\cdots\!20}{18\!\cdots\!51}a^{8}+\frac{10\!\cdots\!64}{18\!\cdots\!51}a^{7}-\frac{47\!\cdots\!72}{18\!\cdots\!51}a^{6}+\frac{54\!\cdots\!76}{18\!\cdots\!51}a^{5}+\frac{54\!\cdots\!67}{30\!\cdots\!16}a^{4}+\frac{12\!\cdots\!68}{18\!\cdots\!51}a^{3}+\frac{36\!\cdots\!41}{18\!\cdots\!51}a^{2}+\frac{53\!\cdots\!24}{18\!\cdots\!51}a+\frac{56\!\cdots\!41}{18\!\cdots\!51}$, $\frac{56\!\cdots\!37}{37\!\cdots\!02}a^{27}+\frac{14\!\cdots\!69}{60\!\cdots\!32}a^{26}+\frac{17\!\cdots\!51}{30\!\cdots\!16}a^{25}+\frac{64\!\cdots\!09}{60\!\cdots\!32}a^{24}+\frac{65\!\cdots\!51}{60\!\cdots\!32}a^{23}+\frac{13\!\cdots\!63}{60\!\cdots\!32}a^{22}+\frac{38\!\cdots\!61}{30\!\cdots\!16}a^{21}+\frac{17\!\cdots\!53}{60\!\cdots\!32}a^{20}+\frac{63\!\cdots\!83}{60\!\cdots\!32}a^{19}+\frac{76\!\cdots\!15}{30\!\cdots\!16}a^{18}+\frac{37\!\cdots\!43}{60\!\cdots\!32}a^{17}+\frac{23\!\cdots\!67}{15\!\cdots\!08}a^{16}+\frac{50\!\cdots\!20}{18\!\cdots\!51}a^{15}+\frac{12\!\cdots\!61}{17\!\cdots\!48}a^{14}+\frac{12\!\cdots\!17}{15\!\cdots\!08}a^{13}+\frac{16\!\cdots\!43}{75\!\cdots\!04}a^{12}+\frac{21\!\cdots\!94}{11\!\cdots\!03}a^{11}+\frac{94\!\cdots\!66}{18\!\cdots\!51}a^{10}+\frac{57\!\cdots\!74}{18\!\cdots\!51}a^{9}+\frac{14\!\cdots\!96}{18\!\cdots\!51}a^{8}+\frac{63\!\cdots\!80}{18\!\cdots\!51}a^{7}+\frac{13\!\cdots\!64}{18\!\cdots\!51}a^{6}+\frac{14\!\cdots\!35}{60\!\cdots\!32}a^{5}+\frac{73\!\cdots\!48}{18\!\cdots\!51}a^{4}+\frac{39\!\cdots\!25}{37\!\cdots\!02}a^{3}+\frac{17\!\cdots\!40}{18\!\cdots\!51}a^{2}+\frac{36\!\cdots\!81}{37\!\cdots\!02}a+\frac{94\!\cdots\!52}{18\!\cdots\!51}$, $\frac{81\!\cdots\!93}{24\!\cdots\!28}a^{27}+\frac{33\!\cdots\!19}{75\!\cdots\!04}a^{26}+\frac{31\!\cdots\!31}{24\!\cdots\!28}a^{25}+\frac{48\!\cdots\!15}{24\!\cdots\!28}a^{24}+\frac{59\!\cdots\!65}{24\!\cdots\!28}a^{23}+\frac{25\!\cdots\!55}{60\!\cdots\!32}a^{22}+\frac{71\!\cdots\!51}{24\!\cdots\!28}a^{21}+\frac{34\!\cdots\!03}{60\!\cdots\!32}a^{20}+\frac{58\!\cdots\!23}{24\!\cdots\!28}a^{19}+\frac{60\!\cdots\!37}{12\!\cdots\!64}a^{18}+\frac{43\!\cdots\!09}{30\!\cdots\!16}a^{17}+\frac{37\!\cdots\!77}{12\!\cdots\!64}a^{16}+\frac{15\!\cdots\!63}{24\!\cdots\!28}a^{15}+\frac{19\!\cdots\!81}{14\!\cdots\!84}a^{14}+\frac{23\!\cdots\!45}{12\!\cdots\!64}a^{13}+\frac{27\!\cdots\!45}{60\!\cdots\!32}a^{12}+\frac{50\!\cdots\!28}{11\!\cdots\!03}a^{11}+\frac{19\!\cdots\!59}{18\!\cdots\!51}a^{10}+\frac{54\!\cdots\!23}{75\!\cdots\!04}a^{9}+\frac{59\!\cdots\!33}{37\!\cdots\!02}a^{8}+\frac{19\!\cdots\!65}{24\!\cdots\!28}a^{7}+\frac{28\!\cdots\!40}{18\!\cdots\!51}a^{6}+\frac{33\!\cdots\!53}{60\!\cdots\!32}a^{5}+\frac{15\!\cdots\!20}{18\!\cdots\!51}a^{4}+\frac{18\!\cdots\!71}{75\!\cdots\!04}a^{3}+\frac{37\!\cdots\!96}{18\!\cdots\!51}a^{2}+\frac{81\!\cdots\!53}{37\!\cdots\!02}a+\frac{21\!\cdots\!00}{18\!\cdots\!51}$, $\frac{56\!\cdots\!61}{77\!\cdots\!96}a^{27}-\frac{21\!\cdots\!23}{38\!\cdots\!48}a^{26}+\frac{57\!\cdots\!29}{19\!\cdots\!24}a^{25}-\frac{13\!\cdots\!17}{77\!\cdots\!96}a^{24}+\frac{22\!\cdots\!95}{38\!\cdots\!48}a^{23}-\frac{21\!\cdots\!95}{77\!\cdots\!96}a^{22}+\frac{28\!\cdots\!77}{38\!\cdots\!48}a^{21}-\frac{20\!\cdots\!73}{77\!\cdots\!96}a^{20}+\frac{23\!\cdots\!97}{38\!\cdots\!48}a^{19}-\frac{38\!\cdots\!75}{24\!\cdots\!28}a^{18}+\frac{22\!\cdots\!05}{60\!\cdots\!32}a^{17}-\frac{23\!\cdots\!67}{38\!\cdots\!48}a^{16}+\frac{31\!\cdots\!09}{19\!\cdots\!24}a^{15}-\frac{58\!\cdots\!93}{45\!\cdots\!88}a^{14}+\frac{20\!\cdots\!43}{38\!\cdots\!48}a^{13}+\frac{61\!\cdots\!23}{77\!\cdots\!96}a^{12}+\frac{17\!\cdots\!49}{14\!\cdots\!84}a^{11}+\frac{43\!\cdots\!49}{48\!\cdots\!56}a^{10}+\frac{45\!\cdots\!37}{24\!\cdots\!28}a^{9}+\frac{67\!\cdots\!55}{24\!\cdots\!28}a^{8}+\frac{14\!\cdots\!41}{75\!\cdots\!04}a^{7}+\frac{64\!\cdots\!25}{15\!\cdots\!08}a^{6}+\frac{86\!\cdots\!41}{75\!\cdots\!04}a^{5}+\frac{11\!\cdots\!47}{30\!\cdots\!16}a^{4}+\frac{60\!\cdots\!80}{18\!\cdots\!51}a^{3}+\frac{27\!\cdots\!81}{18\!\cdots\!51}a^{2}+\frac{34\!\cdots\!78}{18\!\cdots\!51}a+\frac{35\!\cdots\!94}{18\!\cdots\!51}$, $\frac{18\!\cdots\!57}{38\!\cdots\!48}a^{27}+\frac{12\!\cdots\!07}{19\!\cdots\!24}a^{26}+\frac{74\!\cdots\!99}{38\!\cdots\!48}a^{25}+\frac{11\!\cdots\!39}{19\!\cdots\!24}a^{24}+\frac{14\!\cdots\!75}{38\!\cdots\!48}a^{23}+\frac{65\!\cdots\!01}{38\!\cdots\!48}a^{22}+\frac{22\!\cdots\!95}{48\!\cdots\!56}a^{21}+\frac{16\!\cdots\!09}{60\!\cdots\!32}a^{20}+\frac{14\!\cdots\!83}{38\!\cdots\!48}a^{19}+\frac{64\!\cdots\!27}{24\!\cdots\!28}a^{18}+\frac{44\!\cdots\!93}{19\!\cdots\!24}a^{17}+\frac{17\!\cdots\!83}{96\!\cdots\!12}a^{16}+\frac{19\!\cdots\!13}{19\!\cdots\!24}a^{15}+\frac{20\!\cdots\!03}{22\!\cdots\!44}a^{14}+\frac{63\!\cdots\!67}{19\!\cdots\!24}a^{13}+\frac{30\!\cdots\!21}{96\!\cdots\!12}a^{12}+\frac{17\!\cdots\!41}{22\!\cdots\!44}a^{11}+\frac{93\!\cdots\!61}{12\!\cdots\!64}a^{10}+\frac{11\!\cdots\!53}{96\!\cdots\!12}a^{9}+\frac{77\!\cdots\!61}{60\!\cdots\!32}a^{8}+\frac{81\!\cdots\!19}{60\!\cdots\!32}a^{7}+\frac{10\!\cdots\!59}{75\!\cdots\!04}a^{6}+\frac{54\!\cdots\!35}{60\!\cdots\!32}a^{5}+\frac{15\!\cdots\!43}{18\!\cdots\!51}a^{4}+\frac{49\!\cdots\!43}{15\!\cdots\!08}a^{3}+\frac{42\!\cdots\!56}{18\!\cdots\!51}a^{2}+\frac{95\!\cdots\!65}{37\!\cdots\!02}a+\frac{29\!\cdots\!08}{18\!\cdots\!51}$, $\frac{44\!\cdots\!81}{15\!\cdots\!08}a^{27}-\frac{46\!\cdots\!05}{15\!\cdots\!08}a^{26}+\frac{36\!\cdots\!03}{30\!\cdots\!16}a^{25}-\frac{15\!\cdots\!39}{15\!\cdots\!08}a^{24}+\frac{70\!\cdots\!49}{30\!\cdots\!16}a^{23}-\frac{51\!\cdots\!51}{30\!\cdots\!16}a^{22}+\frac{86\!\cdots\!29}{30\!\cdots\!16}a^{21}-\frac{26\!\cdots\!33}{15\!\cdots\!08}a^{20}+\frac{71\!\cdots\!05}{30\!\cdots\!16}a^{19}-\frac{36\!\cdots\!01}{30\!\cdots\!16}a^{18}+\frac{21\!\cdots\!57}{15\!\cdots\!08}a^{17}-\frac{17\!\cdots\!97}{30\!\cdots\!16}a^{16}+\frac{45\!\cdots\!65}{75\!\cdots\!04}a^{15}-\frac{17\!\cdots\!01}{88\!\cdots\!24}a^{14}+\frac{13\!\cdots\!93}{75\!\cdots\!04}a^{13}-\frac{17\!\cdots\!91}{37\!\cdots\!02}a^{12}+\frac{44\!\cdots\!02}{11\!\cdots\!03}a^{11}-\frac{13\!\cdots\!48}{18\!\cdots\!51}a^{10}+\frac{11\!\cdots\!72}{18\!\cdots\!51}a^{9}-\frac{11\!\cdots\!20}{18\!\cdots\!51}a^{8}+\frac{10\!\cdots\!64}{18\!\cdots\!51}a^{7}-\frac{47\!\cdots\!72}{18\!\cdots\!51}a^{6}+\frac{54\!\cdots\!76}{18\!\cdots\!51}a^{5}+\frac{54\!\cdots\!67}{30\!\cdots\!16}a^{4}+\frac{12\!\cdots\!68}{18\!\cdots\!51}a^{3}+\frac{36\!\cdots\!41}{18\!\cdots\!51}a^{2}+\frac{53\!\cdots\!24}{18\!\cdots\!51}a+\frac{37\!\cdots\!90}{18\!\cdots\!51}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 487075979.1876791 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{14}\cdot 487075979.1876791 \cdot 25984}{2\cdot\sqrt{71403665296191917297019015087709113341743884283129}}\cr\approx \mathstrut & 0.111925908545134 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^28 - x^27 + 41*x^26 - 34*x^25 + 814*x^24 - 569*x^23 + 10073*x^22 - 5894*x^21 + 85446*x^20 - 41430*x^19 + 517766*x^18 - 204124*x^17 + 2278084*x^16 - 713493*x^15 + 7270037*x^14 - 1746022*x^13 + 16581844*x^12 - 2930752*x^11 + 26206720*x^10 - 3163168*x^9 + 27305280*x^8 - 2133504*x^7 + 17228288*x^6 - 594944*x^5 + 5748736*x^4 - 229376*x^3 + 745472*x^2 + 57344*x + 16384);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{14}$ (as 28T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 28
The 28 conjugacy class representatives for $C_2\times C_{14}$
Character table for $C_2\times C_{14}$ is not computed

Intermediate fields

\(\Q(\sqrt{-203}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{29})\), 7.7.594823321.1, 14.0.8450068952156066122535627.1, \(\Q(\zeta_{29})^+\), 14.0.291381688005381590432263.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.14.0.1}{14} }^{2}$ ${\href{/padicField/3.14.0.1}{14} }^{2}$ ${\href{/padicField/5.14.0.1}{14} }^{2}$ R ${\href{/padicField/11.14.0.1}{14} }^{2}$ ${\href{/padicField/13.14.0.1}{14} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{14}$ ${\href{/padicField/19.14.0.1}{14} }^{2}$ ${\href{/padicField/23.7.0.1}{7} }^{4}$ R ${\href{/padicField/31.14.0.1}{14} }^{2}$ ${\href{/padicField/37.14.0.1}{14} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{14}$ ${\href{/padicField/43.14.0.1}{14} }^{2}$ ${\href{/padicField/47.14.0.1}{14} }^{2}$ ${\href{/padicField/53.7.0.1}{7} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{14}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.14.7.1$x^{14} + 49 x^{12} + 1029 x^{10} + 12017 x^{8} + 8 x^{7} + 82859 x^{6} - 1176 x^{5} + 352947 x^{4} + 13720 x^{3} + 881203 x^{2} - 19160 x + 794999$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
7.14.7.1$x^{14} + 49 x^{12} + 1029 x^{10} + 12017 x^{8} + 8 x^{7} + 82859 x^{6} - 1176 x^{5} + 352947 x^{4} + 13720 x^{3} + 881203 x^{2} - 19160 x + 794999$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
\(29\) Copy content Toggle raw display 29.14.13.1$x^{14} + 29$$14$$1$$13$$C_{14}$$[\ ]_{14}$
29.14.13.1$x^{14} + 29$$14$$1$$13$$C_{14}$$[\ ]_{14}$