Properties

Label 27.27.706...369.1
Degree $27$
Signature $[27, 0]$
Discriminant $7.070\times 10^{44}$
Root discriminant \(45.82\)
Ramified prime $3$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{27}$ (as 27T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1)
 
gp: K = bnfinit(y^27 - 27*y^25 + 324*y^23 - 2277*y^21 + 10395*y^19 - 32319*y^17 + 69768*y^15 - 104652*y^13 + 107406*y^11 - 72930*y^9 + 30888*y^7 - 7371*y^5 + 819*y^3 - 27*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1)
 

\( x^{27} - 27 x^{25} + 324 x^{23} - 2277 x^{21} + 10395 x^{19} - 32319 x^{17} + 69768 x^{15} - 104652 x^{13} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[27, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(706965049015104706497203195837614914543357369\) \(\medspace = 3^{94}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.82\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{94/27}\approx 45.82355857897648$
Ramified primes:   \(3\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $27$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(81=3^{4}\)
Dirichlet character group:    $\lbrace$$\chi_{81}(64,·)$, $\chi_{81}(1,·)$, $\chi_{81}(67,·)$, $\chi_{81}(4,·)$, $\chi_{81}(70,·)$, $\chi_{81}(7,·)$, $\chi_{81}(73,·)$, $\chi_{81}(10,·)$, $\chi_{81}(76,·)$, $\chi_{81}(13,·)$, $\chi_{81}(79,·)$, $\chi_{81}(16,·)$, $\chi_{81}(19,·)$, $\chi_{81}(22,·)$, $\chi_{81}(25,·)$, $\chi_{81}(28,·)$, $\chi_{81}(31,·)$, $\chi_{81}(34,·)$, $\chi_{81}(37,·)$, $\chi_{81}(40,·)$, $\chi_{81}(43,·)$, $\chi_{81}(46,·)$, $\chi_{81}(49,·)$, $\chi_{81}(52,·)$, $\chi_{81}(55,·)$, $\chi_{81}(58,·)$, $\chi_{81}(61,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $26$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{18}-18a^{16}+135a^{14}-546a^{12}+1287a^{10}-1782a^{8}+1386a^{6}-540a^{4}+81a^{2}-2$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+2940a^{13}-5733a^{11}+7007a^{9}-5148a^{7}-a^{6}+2079a^{5}+6a^{4}-385a^{3}-9a^{2}+21a+2$, $a^{24}-24a^{22}+252a^{20}-1520a^{18}+5814a^{16}-14688a^{14}+24752a^{12}-27456a^{10}+19305a^{8}-8008a^{6}+1716a^{4}-144a^{2}+2$, $a^{3}-3a$, $a^{21}-21a^{19}+189a^{17}-952a^{15}+2940a^{13}-5733a^{11}+7007a^{9}-5148a^{7}+2079a^{5}-385a^{3}+21a$, $a^{15}-15a^{13}+90a^{11}-275a^{9}+450a^{7}-378a^{5}+140a^{3}-15a$, $a^{12}-12a^{10}+54a^{8}-112a^{6}+105a^{4}-36a^{2}+2$, $a^{11}-11a^{9}+44a^{7}-77a^{5}+55a^{3}-11a$, $a^{19}-19a^{17}+152a^{15}-665a^{13}+1729a^{11}-2717a^{9}-a^{8}+2508a^{7}+8a^{6}-1254a^{5}-20a^{4}+285a^{3}+16a^{2}-19a-2$, $a^{19}-19a^{17}+152a^{15}-665a^{13}+1729a^{11}-2717a^{9}+2508a^{7}-1254a^{5}+285a^{3}-19a$, $a^{16}-16a^{14}+104a^{12}-352a^{10}+660a^{8}-672a^{6}+336a^{4}-64a^{2}+2$, $a^{22}-22a^{20}+209a^{18}-1122a^{16}+3740a^{14}-8008a^{12}+11011a^{10}-9438a^{8}+4719a^{6}-1210a^{4}+121a^{2}-2$, $a^{5}-5a^{3}+5a$, $a^{17}-17a^{15}+119a^{13}-442a^{11}-a^{10}+935a^{9}+10a^{8}-1122a^{7}-35a^{6}+714a^{5}+50a^{4}-204a^{3}-25a^{2}+17a+2$, $a^{10}-10a^{8}+35a^{6}-50a^{4}+25a^{2}-2$, $a^{13}-13a^{11}+65a^{9}-156a^{7}+182a^{5}-91a^{3}+13a$, $a^{14}-14a^{12}+77a^{10}-210a^{8}+294a^{6}-196a^{4}+49a^{2}-2$, $a^{23}-23a^{21}+230a^{19}-1311a^{17}+4692a^{15}-10948a^{13}+16744a^{11}-16445a^{9}+9867a^{7}-3289a^{5}-a^{4}+506a^{3}+4a^{2}-23a-2$, $a^{4}-4a^{2}+2$, $a^{25}-25a^{23}+275a^{21}-1750a^{19}+7125a^{17}-19380a^{15}+35700a^{13}-44200a^{11}+35750a^{9}-17875a^{7}+5005a^{5}-650a^{3}-a^{2}+25a+2$, $a^{25}-25a^{23}+275a^{21}-1750a^{19}+7125a^{17}-19380a^{15}+35700a^{13}-44200a^{11}+35750a^{9}-17875a^{7}+5005a^{5}-650a^{3}+25a$, $a^{26}-26a^{24}+299a^{22}-2002a^{20}+8645a^{18}-25194a^{16}+50388a^{14}-68952a^{12}+63206a^{10}-37180a^{8}+13013a^{6}-2366a^{4}+169a^{2}-2$, $a^{20}-20a^{18}+170a^{16}-800a^{14}+2275a^{12}-4004a^{10}+4290a^{8}-a^{7}-2640a^{6}+7a^{5}+825a^{4}-14a^{3}-100a^{2}+7a+2$, $a^{20}-20a^{18}+170a^{16}-800a^{14}+2275a^{12}-4004a^{10}+4290a^{8}-2640a^{6}+825a^{4}-100a^{2}+2$, $a^{10}-10a^{8}+35a^{6}-a^{5}-50a^{4}+5a^{3}+25a^{2}-5a-1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 68981171346332.37 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{27}\cdot(2\pi)^{0}\cdot 68981171346332.37 \cdot 1}{2\cdot\sqrt{706965049015104706497203195837614914543357369}}\cr\approx \mathstrut & 0.174105094869797 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 27*x^25 + 324*x^23 - 2277*x^21 + 10395*x^19 - 32319*x^17 + 69768*x^15 - 104652*x^13 + 107406*x^11 - 72930*x^9 + 30888*x^7 - 7371*x^5 + 819*x^3 - 27*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{27}$ (as 27T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 27
The 27 conjugacy class representatives for $C_{27}$
Character table for $C_{27}$

Intermediate fields

\(\Q(\zeta_{9})^+\), \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $27$ R $27$ $27$ $27$ $27$ ${\href{/padicField/17.9.0.1}{9} }^{3}$ ${\href{/padicField/19.9.0.1}{9} }^{3}$ $27$ $27$ $27$ ${\href{/padicField/37.9.0.1}{9} }^{3}$ $27$ $27$ $27$ ${\href{/padicField/53.3.0.1}{3} }^{9}$ $27$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $27$$27$$1$$94$