Properties

Label 27.27.550...809.1
Degree $27$
Signature $[27, 0]$
Discriminant $5.509\times 10^{50}$
Root discriminant \(75.74\)
Ramified primes $13,19$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3\times C_9$ (as 27T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699)
 
gp: K = bnfinit(y^27 - 6*y^26 - 47*y^25 + 302*y^24 + 943*y^23 - 6448*y^22 - 10567*y^21 + 76481*y^20 + 71695*y^19 - 556066*y^18 - 291044*y^17 + 2587104*y^16 + 603975*y^15 - 7811439*y^14 - 35156*y^13 + 15161145*y^12 - 2848142*y^11 - 18230502*y^10 + 6439289*y^9 + 12558384*y^8 - 6282221*y^7 - 4210683*y^6 + 2778704*y^5 + 421825*y^4 - 457387*y^3 + 20126*y^2 + 21522*y - 2699, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699)
 

\( x^{27} - 6 x^{26} - 47 x^{25} + 302 x^{24} + 943 x^{23} - 6448 x^{22} - 10567 x^{21} + 76481 x^{20} + \cdots - 2699 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[27, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(550892378962365588304561118053988796799287710804809\) \(\medspace = 13^{18}\cdot 19^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(75.74\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{2/3}19^{8/9}\approx 75.73537306555289$
Ramified primes:   \(13\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $27$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(247=13\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{247}(1,·)$, $\chi_{247}(66,·)$, $\chi_{247}(131,·)$, $\chi_{247}(196,·)$, $\chi_{247}(9,·)$, $\chi_{247}(74,·)$, $\chi_{247}(139,·)$, $\chi_{247}(16,·)$, $\chi_{247}(81,·)$, $\chi_{247}(87,·)$, $\chi_{247}(68,·)$, $\chi_{247}(92,·)$, $\chi_{247}(157,·)$, $\chi_{247}(159,·)$, $\chi_{247}(144,·)$, $\chi_{247}(35,·)$, $\chi_{247}(100,·)$, $\chi_{247}(42,·)$, $\chi_{247}(235,·)$, $\chi_{247}(172,·)$, $\chi_{247}(237,·)$, $\chi_{247}(178,·)$, $\chi_{247}(118,·)$, $\chi_{247}(55,·)$, $\chi_{247}(120,·)$, $\chi_{247}(61,·)$, $\chi_{247}(191,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{51\!\cdots\!61}a^{26}-\frac{23\!\cdots\!70}{51\!\cdots\!61}a^{25}-\frac{17\!\cdots\!04}{51\!\cdots\!61}a^{24}-\frac{18\!\cdots\!87}{51\!\cdots\!61}a^{23}+\frac{33\!\cdots\!96}{51\!\cdots\!61}a^{22}+\frac{46\!\cdots\!41}{51\!\cdots\!61}a^{21}+\frac{61\!\cdots\!83}{51\!\cdots\!61}a^{20}+\frac{11\!\cdots\!17}{51\!\cdots\!61}a^{19}-\frac{12\!\cdots\!29}{51\!\cdots\!61}a^{18}+\frac{11\!\cdots\!25}{51\!\cdots\!61}a^{17}+\frac{52\!\cdots\!28}{51\!\cdots\!61}a^{16}+\frac{18\!\cdots\!81}{51\!\cdots\!61}a^{15}-\frac{98\!\cdots\!33}{51\!\cdots\!61}a^{14}+\frac{21\!\cdots\!78}{51\!\cdots\!61}a^{13}-\frac{18\!\cdots\!64}{51\!\cdots\!61}a^{12}+\frac{97\!\cdots\!44}{51\!\cdots\!61}a^{11}+\frac{18\!\cdots\!51}{51\!\cdots\!61}a^{10}-\frac{24\!\cdots\!73}{51\!\cdots\!61}a^{9}-\frac{79\!\cdots\!59}{51\!\cdots\!61}a^{8}-\frac{11\!\cdots\!59}{51\!\cdots\!61}a^{7}-\frac{21\!\cdots\!13}{51\!\cdots\!61}a^{6}-\frac{20\!\cdots\!96}{51\!\cdots\!61}a^{5}+\frac{14\!\cdots\!77}{51\!\cdots\!61}a^{4}-\frac{23\!\cdots\!58}{51\!\cdots\!61}a^{3}-\frac{21\!\cdots\!11}{51\!\cdots\!61}a^{2}+\frac{14\!\cdots\!88}{51\!\cdots\!61}a+\frac{20\!\cdots\!83}{51\!\cdots\!61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $26$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{21\!\cdots\!64}{51\!\cdots\!61}a^{26}-\frac{11\!\cdots\!45}{51\!\cdots\!61}a^{25}-\frac{10\!\cdots\!27}{51\!\cdots\!61}a^{24}+\frac{59\!\cdots\!04}{51\!\cdots\!61}a^{23}+\frac{22\!\cdots\!15}{51\!\cdots\!61}a^{22}-\frac{12\!\cdots\!46}{51\!\cdots\!61}a^{21}-\frac{27\!\cdots\!89}{51\!\cdots\!61}a^{20}+\frac{14\!\cdots\!73}{51\!\cdots\!61}a^{19}+\frac{21\!\cdots\!13}{51\!\cdots\!61}a^{18}-\frac{10\!\cdots\!26}{51\!\cdots\!61}a^{17}-\frac{10\!\cdots\!35}{51\!\cdots\!61}a^{16}+\frac{50\!\cdots\!63}{51\!\cdots\!61}a^{15}+\frac{35\!\cdots\!35}{51\!\cdots\!61}a^{14}-\frac{15\!\cdots\!89}{51\!\cdots\!61}a^{13}-\frac{69\!\cdots\!89}{51\!\cdots\!61}a^{12}+\frac{29\!\cdots\!35}{51\!\cdots\!61}a^{11}+\frac{72\!\cdots\!29}{51\!\cdots\!61}a^{10}-\frac{35\!\cdots\!58}{51\!\cdots\!61}a^{9}-\frac{24\!\cdots\!68}{51\!\cdots\!61}a^{8}+\frac{24\!\cdots\!00}{51\!\cdots\!61}a^{7}-\frac{19\!\cdots\!64}{51\!\cdots\!61}a^{6}-\frac{93\!\cdots\!32}{51\!\cdots\!61}a^{5}+\frac{17\!\cdots\!86}{51\!\cdots\!61}a^{4}+\frac{14\!\cdots\!98}{51\!\cdots\!61}a^{3}-\frac{32\!\cdots\!86}{51\!\cdots\!61}a^{2}-\frac{70\!\cdots\!14}{51\!\cdots\!61}a+\frac{16\!\cdots\!88}{51\!\cdots\!61}$, $\frac{65\!\cdots\!40}{51\!\cdots\!61}a^{26}-\frac{44\!\cdots\!55}{51\!\cdots\!61}a^{25}-\frac{28\!\cdots\!54}{51\!\cdots\!61}a^{24}+\frac{22\!\cdots\!40}{51\!\cdots\!61}a^{23}+\frac{49\!\cdots\!59}{51\!\cdots\!61}a^{22}-\frac{49\!\cdots\!54}{51\!\cdots\!61}a^{21}-\frac{43\!\cdots\!42}{51\!\cdots\!61}a^{20}+\frac{59\!\cdots\!65}{51\!\cdots\!61}a^{19}+\frac{17\!\cdots\!72}{51\!\cdots\!61}a^{18}-\frac{44\!\cdots\!42}{51\!\cdots\!61}a^{17}+\frac{85\!\cdots\!79}{51\!\cdots\!61}a^{16}+\frac{21\!\cdots\!39}{51\!\cdots\!61}a^{15}-\frac{46\!\cdots\!01}{51\!\cdots\!61}a^{14}-\frac{68\!\cdots\!67}{51\!\cdots\!61}a^{13}+\frac{23\!\cdots\!00}{51\!\cdots\!61}a^{12}+\frac{13\!\cdots\!91}{51\!\cdots\!61}a^{11}-\frac{60\!\cdots\!03}{51\!\cdots\!61}a^{10}-\frac{17\!\cdots\!63}{51\!\cdots\!61}a^{9}+\frac{87\!\cdots\!77}{51\!\cdots\!61}a^{8}+\frac{13\!\cdots\!82}{51\!\cdots\!61}a^{7}-\frac{70\!\cdots\!37}{51\!\cdots\!61}a^{6}-\frac{51\!\cdots\!31}{51\!\cdots\!61}a^{5}+\frac{28\!\cdots\!06}{51\!\cdots\!61}a^{4}+\frac{85\!\cdots\!01}{51\!\cdots\!61}a^{3}-\frac{43\!\cdots\!26}{51\!\cdots\!61}a^{2}-\frac{48\!\cdots\!54}{51\!\cdots\!61}a+\frac{17\!\cdots\!54}{51\!\cdots\!61}$, $\frac{88\!\cdots\!42}{51\!\cdots\!61}a^{26}-\frac{51\!\cdots\!70}{51\!\cdots\!61}a^{25}-\frac{42\!\cdots\!76}{51\!\cdots\!61}a^{24}+\frac{26\!\cdots\!47}{51\!\cdots\!61}a^{23}+\frac{88\!\cdots\!70}{51\!\cdots\!61}a^{22}-\frac{55\!\cdots\!58}{51\!\cdots\!61}a^{21}-\frac{10\!\cdots\!33}{51\!\cdots\!61}a^{20}+\frac{66\!\cdots\!64}{51\!\cdots\!61}a^{19}+\frac{74\!\cdots\!29}{51\!\cdots\!61}a^{18}-\frac{48\!\cdots\!68}{51\!\cdots\!61}a^{17}-\frac{33\!\cdots\!81}{51\!\cdots\!61}a^{16}+\frac{22\!\cdots\!74}{51\!\cdots\!61}a^{15}+\frac{91\!\cdots\!50}{51\!\cdots\!61}a^{14}-\frac{67\!\cdots\!97}{51\!\cdots\!61}a^{13}-\frac{11\!\cdots\!43}{51\!\cdots\!61}a^{12}+\frac{13\!\cdots\!70}{51\!\cdots\!61}a^{11}-\frac{20\!\cdots\!13}{51\!\cdots\!61}a^{10}-\frac{16\!\cdots\!24}{51\!\cdots\!61}a^{9}+\frac{28\!\cdots\!80}{51\!\cdots\!61}a^{8}+\frac{11\!\cdots\!45}{51\!\cdots\!61}a^{7}-\frac{34\!\cdots\!02}{51\!\cdots\!61}a^{6}-\frac{44\!\cdots\!27}{51\!\cdots\!61}a^{5}+\frac{16\!\cdots\!42}{51\!\cdots\!61}a^{4}+\frac{70\!\cdots\!89}{51\!\cdots\!61}a^{3}-\frac{28\!\cdots\!78}{51\!\cdots\!61}a^{2}-\frac{38\!\cdots\!61}{51\!\cdots\!61}a+\frac{12\!\cdots\!39}{51\!\cdots\!61}$, $\frac{65\!\cdots\!40}{51\!\cdots\!61}a^{26}-\frac{44\!\cdots\!55}{51\!\cdots\!61}a^{25}-\frac{28\!\cdots\!54}{51\!\cdots\!61}a^{24}+\frac{22\!\cdots\!40}{51\!\cdots\!61}a^{23}+\frac{49\!\cdots\!59}{51\!\cdots\!61}a^{22}-\frac{49\!\cdots\!54}{51\!\cdots\!61}a^{21}-\frac{43\!\cdots\!42}{51\!\cdots\!61}a^{20}+\frac{59\!\cdots\!65}{51\!\cdots\!61}a^{19}+\frac{17\!\cdots\!72}{51\!\cdots\!61}a^{18}-\frac{44\!\cdots\!42}{51\!\cdots\!61}a^{17}+\frac{85\!\cdots\!79}{51\!\cdots\!61}a^{16}+\frac{21\!\cdots\!39}{51\!\cdots\!61}a^{15}-\frac{46\!\cdots\!01}{51\!\cdots\!61}a^{14}-\frac{68\!\cdots\!67}{51\!\cdots\!61}a^{13}+\frac{23\!\cdots\!00}{51\!\cdots\!61}a^{12}+\frac{13\!\cdots\!91}{51\!\cdots\!61}a^{11}-\frac{60\!\cdots\!03}{51\!\cdots\!61}a^{10}-\frac{17\!\cdots\!63}{51\!\cdots\!61}a^{9}+\frac{87\!\cdots\!77}{51\!\cdots\!61}a^{8}+\frac{13\!\cdots\!82}{51\!\cdots\!61}a^{7}-\frac{70\!\cdots\!37}{51\!\cdots\!61}a^{6}-\frac{51\!\cdots\!31}{51\!\cdots\!61}a^{5}+\frac{28\!\cdots\!06}{51\!\cdots\!61}a^{4}+\frac{85\!\cdots\!01}{51\!\cdots\!61}a^{3}-\frac{43\!\cdots\!26}{51\!\cdots\!61}a^{2}-\frac{48\!\cdots\!54}{51\!\cdots\!61}a+\frac{18\!\cdots\!15}{51\!\cdots\!61}$, $\frac{34\!\cdots\!40}{51\!\cdots\!61}a^{26}-\frac{18\!\cdots\!13}{51\!\cdots\!61}a^{25}-\frac{17\!\cdots\!79}{51\!\cdots\!61}a^{24}+\frac{93\!\cdots\!51}{51\!\cdots\!61}a^{23}+\frac{38\!\cdots\!75}{51\!\cdots\!61}a^{22}-\frac{19\!\cdots\!40}{51\!\cdots\!61}a^{21}-\frac{49\!\cdots\!72}{51\!\cdots\!61}a^{20}+\frac{23\!\cdots\!79}{51\!\cdots\!61}a^{19}+\frac{39\!\cdots\!66}{51\!\cdots\!61}a^{18}-\frac{16\!\cdots\!94}{51\!\cdots\!61}a^{17}-\frac{20\!\cdots\!08}{51\!\cdots\!61}a^{16}+\frac{75\!\cdots\!63}{51\!\cdots\!61}a^{15}+\frac{66\!\cdots\!21}{51\!\cdots\!61}a^{14}-\frac{22\!\cdots\!06}{51\!\cdots\!61}a^{13}-\frac{13\!\cdots\!17}{51\!\cdots\!61}a^{12}+\frac{42\!\cdots\!35}{51\!\cdots\!61}a^{11}+\frac{15\!\cdots\!07}{51\!\cdots\!61}a^{10}-\frac{50\!\cdots\!17}{51\!\cdots\!61}a^{9}-\frac{72\!\cdots\!23}{51\!\cdots\!61}a^{8}+\frac{35\!\cdots\!13}{51\!\cdots\!61}a^{7}-\frac{13\!\cdots\!74}{51\!\cdots\!61}a^{6}-\frac{13\!\cdots\!34}{51\!\cdots\!61}a^{5}+\frac{22\!\cdots\!14}{51\!\cdots\!61}a^{4}+\frac{20\!\cdots\!54}{51\!\cdots\!61}a^{3}-\frac{46\!\cdots\!47}{51\!\cdots\!61}a^{2}-\frac{10\!\cdots\!24}{51\!\cdots\!61}a+\frac{24\!\cdots\!79}{51\!\cdots\!61}$, $\frac{20\!\cdots\!06}{51\!\cdots\!61}a^{26}-\frac{12\!\cdots\!75}{51\!\cdots\!61}a^{25}-\frac{95\!\cdots\!53}{51\!\cdots\!61}a^{24}+\frac{63\!\cdots\!51}{51\!\cdots\!61}a^{23}+\frac{19\!\cdots\!05}{51\!\cdots\!61}a^{22}-\frac{13\!\cdots\!04}{51\!\cdots\!61}a^{21}-\frac{21\!\cdots\!56}{51\!\cdots\!61}a^{20}+\frac{16\!\cdots\!57}{51\!\cdots\!61}a^{19}+\frac{14\!\cdots\!72}{51\!\cdots\!61}a^{18}-\frac{11\!\cdots\!94}{51\!\cdots\!61}a^{17}-\frac{59\!\cdots\!40}{51\!\cdots\!61}a^{16}+\frac{56\!\cdots\!37}{51\!\cdots\!61}a^{15}+\frac{13\!\cdots\!45}{51\!\cdots\!61}a^{14}-\frac{17\!\cdots\!26}{51\!\cdots\!61}a^{13}-\frac{63\!\cdots\!36}{51\!\cdots\!61}a^{12}+\frac{34\!\cdots\!05}{51\!\cdots\!61}a^{11}-\frac{42\!\cdots\!54}{51\!\cdots\!61}a^{10}-\frac{42\!\cdots\!42}{51\!\cdots\!61}a^{9}+\frac{10\!\cdots\!53}{51\!\cdots\!61}a^{8}+\frac{30\!\cdots\!05}{51\!\cdots\!61}a^{7}-\frac{10\!\cdots\!86}{51\!\cdots\!61}a^{6}-\frac{11\!\cdots\!69}{51\!\cdots\!61}a^{5}+\frac{48\!\cdots\!69}{51\!\cdots\!61}a^{4}+\frac{18\!\cdots\!77}{51\!\cdots\!61}a^{3}-\frac{78\!\cdots\!69}{51\!\cdots\!61}a^{2}-\frac{97\!\cdots\!25}{51\!\cdots\!61}a+\frac{32\!\cdots\!51}{51\!\cdots\!61}$, $\frac{21\!\cdots\!02}{51\!\cdots\!61}a^{26}-\frac{11\!\cdots\!79}{51\!\cdots\!61}a^{25}-\frac{11\!\cdots\!85}{51\!\cdots\!61}a^{24}+\frac{57\!\cdots\!68}{51\!\cdots\!61}a^{23}+\frac{24\!\cdots\!65}{51\!\cdots\!61}a^{22}-\frac{12\!\cdots\!68}{51\!\cdots\!61}a^{21}-\frac{31\!\cdots\!85}{51\!\cdots\!61}a^{20}+\frac{14\!\cdots\!83}{51\!\cdots\!61}a^{19}+\frac{26\!\cdots\!95}{51\!\cdots\!61}a^{18}-\frac{10\!\cdots\!62}{51\!\cdots\!61}a^{17}-\frac{13\!\cdots\!69}{51\!\cdots\!61}a^{16}+\frac{45\!\cdots\!87}{51\!\cdots\!61}a^{15}+\frac{46\!\cdots\!41}{51\!\cdots\!61}a^{14}-\frac{13\!\cdots\!23}{51\!\cdots\!61}a^{13}-\frac{96\!\cdots\!55}{51\!\cdots\!61}a^{12}+\frac{25\!\cdots\!65}{51\!\cdots\!61}a^{11}+\frac{11\!\cdots\!29}{51\!\cdots\!61}a^{10}-\frac{30\!\cdots\!26}{51\!\cdots\!61}a^{9}-\frac{71\!\cdots\!48}{51\!\cdots\!61}a^{8}+\frac{21\!\cdots\!88}{51\!\cdots\!61}a^{7}+\frac{97\!\cdots\!84}{51\!\cdots\!61}a^{6}-\frac{77\!\cdots\!20}{51\!\cdots\!61}a^{5}+\frac{73\!\cdots\!41}{51\!\cdots\!61}a^{4}+\frac{11\!\cdots\!98}{51\!\cdots\!61}a^{3}-\frac{20\!\cdots\!55}{51\!\cdots\!61}a^{2}-\frac{57\!\cdots\!35}{51\!\cdots\!61}a+\frac{11\!\cdots\!92}{51\!\cdots\!61}$, $\frac{14\!\cdots\!16}{51\!\cdots\!61}a^{26}-\frac{73\!\cdots\!60}{51\!\cdots\!61}a^{25}-\frac{75\!\cdots\!18}{51\!\cdots\!61}a^{24}+\frac{36\!\cdots\!08}{51\!\cdots\!61}a^{23}+\frac{17\!\cdots\!22}{51\!\cdots\!61}a^{22}-\frac{76\!\cdots\!56}{51\!\cdots\!61}a^{21}-\frac{22\!\cdots\!13}{51\!\cdots\!61}a^{20}+\frac{88\!\cdots\!50}{51\!\cdots\!61}a^{19}+\frac{18\!\cdots\!85}{51\!\cdots\!61}a^{18}-\frac{62\!\cdots\!93}{51\!\cdots\!61}a^{17}-\frac{10\!\cdots\!11}{51\!\cdots\!61}a^{16}+\frac{27\!\cdots\!30}{51\!\cdots\!61}a^{15}+\frac{35\!\cdots\!24}{51\!\cdots\!61}a^{14}-\frac{79\!\cdots\!94}{51\!\cdots\!61}a^{13}-\frac{76\!\cdots\!12}{51\!\cdots\!61}a^{12}+\frac{14\!\cdots\!08}{51\!\cdots\!61}a^{11}+\frac{99\!\cdots\!00}{51\!\cdots\!61}a^{10}-\frac{17\!\cdots\!50}{51\!\cdots\!61}a^{9}-\frac{70\!\cdots\!99}{51\!\cdots\!61}a^{8}+\frac{12\!\cdots\!52}{51\!\cdots\!61}a^{7}+\frac{22\!\cdots\!77}{51\!\cdots\!61}a^{6}-\frac{44\!\cdots\!94}{51\!\cdots\!61}a^{5}-\frac{14\!\cdots\!02}{51\!\cdots\!61}a^{4}+\frac{69\!\cdots\!23}{51\!\cdots\!61}a^{3}-\frac{25\!\cdots\!12}{51\!\cdots\!61}a^{2}-\frac{34\!\cdots\!22}{51\!\cdots\!61}a+\frac{26\!\cdots\!86}{51\!\cdots\!61}$, $\frac{21\!\cdots\!64}{51\!\cdots\!61}a^{26}-\frac{11\!\cdots\!45}{51\!\cdots\!61}a^{25}-\frac{10\!\cdots\!27}{51\!\cdots\!61}a^{24}+\frac{59\!\cdots\!04}{51\!\cdots\!61}a^{23}+\frac{22\!\cdots\!15}{51\!\cdots\!61}a^{22}-\frac{12\!\cdots\!46}{51\!\cdots\!61}a^{21}-\frac{27\!\cdots\!89}{51\!\cdots\!61}a^{20}+\frac{14\!\cdots\!73}{51\!\cdots\!61}a^{19}+\frac{21\!\cdots\!13}{51\!\cdots\!61}a^{18}-\frac{10\!\cdots\!26}{51\!\cdots\!61}a^{17}-\frac{10\!\cdots\!35}{51\!\cdots\!61}a^{16}+\frac{50\!\cdots\!63}{51\!\cdots\!61}a^{15}+\frac{35\!\cdots\!35}{51\!\cdots\!61}a^{14}-\frac{15\!\cdots\!89}{51\!\cdots\!61}a^{13}-\frac{69\!\cdots\!89}{51\!\cdots\!61}a^{12}+\frac{29\!\cdots\!35}{51\!\cdots\!61}a^{11}+\frac{72\!\cdots\!29}{51\!\cdots\!61}a^{10}-\frac{35\!\cdots\!58}{51\!\cdots\!61}a^{9}-\frac{24\!\cdots\!68}{51\!\cdots\!61}a^{8}+\frac{24\!\cdots\!00}{51\!\cdots\!61}a^{7}-\frac{19\!\cdots\!64}{51\!\cdots\!61}a^{6}-\frac{93\!\cdots\!32}{51\!\cdots\!61}a^{5}+\frac{17\!\cdots\!86}{51\!\cdots\!61}a^{4}+\frac{14\!\cdots\!98}{51\!\cdots\!61}a^{3}-\frac{32\!\cdots\!86}{51\!\cdots\!61}a^{2}-\frac{70\!\cdots\!75}{51\!\cdots\!61}a+\frac{16\!\cdots\!27}{51\!\cdots\!61}$, $\frac{97\!\cdots\!26}{51\!\cdots\!61}a^{26}-\frac{59\!\cdots\!62}{51\!\cdots\!61}a^{25}-\frac{45\!\cdots\!33}{51\!\cdots\!61}a^{24}+\frac{30\!\cdots\!18}{51\!\cdots\!61}a^{23}+\frac{88\!\cdots\!22}{51\!\cdots\!61}a^{22}-\frac{64\!\cdots\!98}{51\!\cdots\!61}a^{21}-\frac{94\!\cdots\!09}{51\!\cdots\!61}a^{20}+\frac{76\!\cdots\!72}{51\!\cdots\!61}a^{19}+\frac{58\!\cdots\!89}{51\!\cdots\!61}a^{18}-\frac{56\!\cdots\!30}{51\!\cdots\!61}a^{17}-\frac{19\!\cdots\!70}{51\!\cdots\!61}a^{16}+\frac{26\!\cdots\!32}{51\!\cdots\!61}a^{15}+\frac{15\!\cdots\!20}{51\!\cdots\!61}a^{14}-\frac{81\!\cdots\!46}{51\!\cdots\!61}a^{13}+\frac{13\!\cdots\!01}{51\!\cdots\!61}a^{12}+\frac{16\!\cdots\!92}{51\!\cdots\!61}a^{11}-\frac{54\!\cdots\!14}{51\!\cdots\!61}a^{10}-\frac{20\!\cdots\!93}{51\!\cdots\!61}a^{9}+\frac{93\!\cdots\!61}{51\!\cdots\!61}a^{8}+\frac{15\!\cdots\!22}{51\!\cdots\!61}a^{7}-\frac{81\!\cdots\!61}{51\!\cdots\!61}a^{6}-\frac{61\!\cdots\!23}{51\!\cdots\!61}a^{5}+\frac{33\!\cdots\!96}{51\!\cdots\!61}a^{4}+\frac{10\!\cdots\!35}{51\!\cdots\!61}a^{3}-\frac{53\!\cdots\!95}{51\!\cdots\!61}a^{2}-\frac{61\!\cdots\!89}{51\!\cdots\!61}a+\frac{22\!\cdots\!09}{51\!\cdots\!61}$, $\frac{13\!\cdots\!05}{51\!\cdots\!61}a^{26}-\frac{76\!\cdots\!94}{51\!\cdots\!61}a^{25}-\frac{63\!\cdots\!95}{51\!\cdots\!61}a^{24}+\frac{38\!\cdots\!66}{51\!\cdots\!61}a^{23}+\frac{13\!\cdots\!00}{51\!\cdots\!61}a^{22}-\frac{82\!\cdots\!70}{51\!\cdots\!61}a^{21}-\frac{15\!\cdots\!14}{51\!\cdots\!61}a^{20}+\frac{98\!\cdots\!16}{51\!\cdots\!61}a^{19}+\frac{11\!\cdots\!78}{51\!\cdots\!61}a^{18}-\frac{71\!\cdots\!55}{51\!\cdots\!61}a^{17}-\frac{53\!\cdots\!59}{51\!\cdots\!61}a^{16}+\frac{33\!\cdots\!92}{51\!\cdots\!61}a^{15}+\frac{15\!\cdots\!31}{51\!\cdots\!61}a^{14}-\frac{10\!\cdots\!91}{51\!\cdots\!61}a^{13}-\frac{22\!\cdots\!05}{51\!\cdots\!61}a^{12}+\frac{19\!\cdots\!07}{51\!\cdots\!61}a^{11}+\frac{48\!\cdots\!09}{51\!\cdots\!61}a^{10}-\frac{24\!\cdots\!00}{51\!\cdots\!61}a^{9}+\frac{32\!\cdots\!25}{51\!\cdots\!61}a^{8}+\frac{17\!\cdots\!16}{51\!\cdots\!61}a^{7}-\frac{45\!\cdots\!45}{51\!\cdots\!61}a^{6}-\frac{66\!\cdots\!63}{51\!\cdots\!61}a^{5}+\frac{22\!\cdots\!29}{51\!\cdots\!61}a^{4}+\frac{10\!\cdots\!18}{51\!\cdots\!61}a^{3}-\frac{38\!\cdots\!33}{51\!\cdots\!61}a^{2}-\frac{55\!\cdots\!97}{51\!\cdots\!61}a+\frac{16\!\cdots\!79}{51\!\cdots\!61}$, $\frac{52\!\cdots\!73}{51\!\cdots\!61}a^{26}-\frac{28\!\cdots\!13}{51\!\cdots\!61}a^{25}-\frac{26\!\cdots\!56}{51\!\cdots\!61}a^{24}+\frac{14\!\cdots\!67}{51\!\cdots\!61}a^{23}+\frac{58\!\cdots\!67}{51\!\cdots\!61}a^{22}-\frac{30\!\cdots\!04}{51\!\cdots\!61}a^{21}-\frac{74\!\cdots\!39}{51\!\cdots\!61}a^{20}+\frac{35\!\cdots\!71}{51\!\cdots\!61}a^{19}+\frac{60\!\cdots\!17}{51\!\cdots\!61}a^{18}-\frac{25\!\cdots\!26}{51\!\cdots\!61}a^{17}-\frac{31\!\cdots\!12}{51\!\cdots\!61}a^{16}+\frac{11\!\cdots\!80}{51\!\cdots\!61}a^{15}+\frac{10\!\cdots\!81}{51\!\cdots\!61}a^{14}-\frac{34\!\cdots\!51}{51\!\cdots\!61}a^{13}-\frac{22\!\cdots\!44}{51\!\cdots\!61}a^{12}+\frac{65\!\cdots\!26}{51\!\cdots\!61}a^{11}+\frac{27\!\cdots\!55}{51\!\cdots\!61}a^{10}-\frac{77\!\cdots\!30}{51\!\cdots\!61}a^{9}-\frac{16\!\cdots\!16}{51\!\cdots\!61}a^{8}+\frac{54\!\cdots\!48}{51\!\cdots\!61}a^{7}+\frac{25\!\cdots\!54}{51\!\cdots\!61}a^{6}-\frac{19\!\cdots\!75}{51\!\cdots\!61}a^{5}+\frac{15\!\cdots\!88}{51\!\cdots\!61}a^{4}+\frac{29\!\cdots\!25}{51\!\cdots\!61}a^{3}-\frac{42\!\cdots\!38}{51\!\cdots\!61}a^{2}-\frac{13\!\cdots\!32}{51\!\cdots\!61}a+\frac{23\!\cdots\!29}{51\!\cdots\!61}$, $\frac{23\!\cdots\!96}{51\!\cdots\!61}a^{26}-\frac{14\!\cdots\!21}{51\!\cdots\!61}a^{25}-\frac{10\!\cdots\!98}{51\!\cdots\!61}a^{24}+\frac{73\!\cdots\!70}{51\!\cdots\!61}a^{23}+\frac{20\!\cdots\!96}{51\!\cdots\!61}a^{22}-\frac{15\!\cdots\!10}{51\!\cdots\!61}a^{21}-\frac{22\!\cdots\!58}{51\!\cdots\!61}a^{20}+\frac{19\!\cdots\!06}{51\!\cdots\!61}a^{19}+\frac{14\!\cdots\!23}{51\!\cdots\!61}a^{18}-\frac{14\!\cdots\!42}{51\!\cdots\!61}a^{17}-\frac{54\!\cdots\!75}{51\!\cdots\!61}a^{16}+\frac{67\!\cdots\!11}{51\!\cdots\!61}a^{15}+\frac{94\!\cdots\!04}{51\!\cdots\!61}a^{14}-\frac{20\!\cdots\!22}{51\!\cdots\!61}a^{13}+\frac{75\!\cdots\!15}{51\!\cdots\!61}a^{12}+\frac{41\!\cdots\!53}{51\!\cdots\!61}a^{11}-\frac{72\!\cdots\!48}{51\!\cdots\!61}a^{10}-\frac{50\!\cdots\!46}{51\!\cdots\!61}a^{9}+\frac{14\!\cdots\!16}{51\!\cdots\!61}a^{8}+\frac{37\!\cdots\!36}{51\!\cdots\!61}a^{7}-\frac{13\!\cdots\!71}{51\!\cdots\!61}a^{6}-\frac{14\!\cdots\!79}{51\!\cdots\!61}a^{5}+\frac{59\!\cdots\!44}{51\!\cdots\!61}a^{4}+\frac{22\!\cdots\!94}{51\!\cdots\!61}a^{3}-\frac{96\!\cdots\!59}{51\!\cdots\!61}a^{2}-\frac{12\!\cdots\!56}{51\!\cdots\!61}a+\frac{42\!\cdots\!08}{51\!\cdots\!61}$, $\frac{16\!\cdots\!18}{51\!\cdots\!61}a^{26}-\frac{92\!\cdots\!80}{51\!\cdots\!61}a^{25}-\frac{80\!\cdots\!02}{51\!\cdots\!61}a^{24}+\frac{46\!\cdots\!67}{51\!\cdots\!61}a^{23}+\frac{16\!\cdots\!12}{51\!\cdots\!61}a^{22}-\frac{98\!\cdots\!99}{51\!\cdots\!61}a^{21}-\frac{20\!\cdots\!86}{51\!\cdots\!61}a^{20}+\frac{11\!\cdots\!96}{51\!\cdots\!61}a^{19}+\frac{15\!\cdots\!65}{51\!\cdots\!61}a^{18}-\frac{83\!\cdots\!24}{51\!\cdots\!61}a^{17}-\frac{72\!\cdots\!64}{51\!\cdots\!61}a^{16}+\frac{38\!\cdots\!80}{51\!\cdots\!61}a^{15}+\frac{20\!\cdots\!56}{51\!\cdots\!61}a^{14}-\frac{11\!\cdots\!17}{51\!\cdots\!61}a^{13}-\frac{31\!\cdots\!06}{51\!\cdots\!61}a^{12}+\frac{22\!\cdots\!70}{51\!\cdots\!61}a^{11}+\frac{10\!\cdots\!34}{51\!\cdots\!61}a^{10}-\frac{27\!\cdots\!30}{51\!\cdots\!61}a^{9}+\frac{37\!\cdots\!76}{51\!\cdots\!61}a^{8}+\frac{19\!\cdots\!31}{51\!\cdots\!61}a^{7}-\frac{54\!\cdots\!54}{51\!\cdots\!61}a^{6}-\frac{74\!\cdots\!99}{51\!\cdots\!61}a^{5}+\frac{27\!\cdots\!00}{51\!\cdots\!61}a^{4}+\frac{11\!\cdots\!27}{51\!\cdots\!61}a^{3}-\frac{45\!\cdots\!09}{51\!\cdots\!61}a^{2}-\frac{61\!\cdots\!97}{51\!\cdots\!61}a+\frac{20\!\cdots\!79}{51\!\cdots\!61}$, $\frac{13\!\cdots\!49}{51\!\cdots\!61}a^{26}-\frac{78\!\cdots\!25}{51\!\cdots\!61}a^{25}-\frac{65\!\cdots\!01}{51\!\cdots\!61}a^{24}+\frac{39\!\cdots\!92}{51\!\cdots\!61}a^{23}+\frac{13\!\cdots\!87}{51\!\cdots\!61}a^{22}-\frac{85\!\cdots\!84}{51\!\cdots\!61}a^{21}-\frac{16\!\cdots\!69}{51\!\cdots\!61}a^{20}+\frac{10\!\cdots\!93}{51\!\cdots\!61}a^{19}+\frac{11\!\cdots\!68}{51\!\cdots\!61}a^{18}-\frac{73\!\cdots\!71}{51\!\cdots\!61}a^{17}-\frac{54\!\cdots\!38}{51\!\cdots\!61}a^{16}+\frac{34\!\cdots\!74}{51\!\cdots\!61}a^{15}+\frac{15\!\cdots\!40}{51\!\cdots\!61}a^{14}-\frac{10\!\cdots\!03}{51\!\cdots\!61}a^{13}-\frac{21\!\cdots\!45}{51\!\cdots\!61}a^{12}+\frac{20\!\cdots\!09}{51\!\cdots\!61}a^{11}+\frac{23\!\cdots\!50}{51\!\cdots\!61}a^{10}-\frac{25\!\cdots\!34}{51\!\cdots\!61}a^{9}+\frac{36\!\cdots\!50}{51\!\cdots\!61}a^{8}+\frac{18\!\cdots\!99}{51\!\cdots\!61}a^{7}-\frac{48\!\cdots\!03}{51\!\cdots\!61}a^{6}-\frac{69\!\cdots\!09}{51\!\cdots\!61}a^{5}+\frac{23\!\cdots\!16}{51\!\cdots\!61}a^{4}+\frac{11\!\cdots\!05}{51\!\cdots\!61}a^{3}-\frac{40\!\cdots\!41}{51\!\cdots\!61}a^{2}-\frac{61\!\cdots\!87}{51\!\cdots\!61}a+\frac{18\!\cdots\!82}{51\!\cdots\!61}$, $\frac{20\!\cdots\!81}{51\!\cdots\!61}a^{26}-\frac{96\!\cdots\!44}{51\!\cdots\!61}a^{25}-\frac{11\!\cdots\!42}{51\!\cdots\!61}a^{24}+\frac{48\!\cdots\!33}{51\!\cdots\!61}a^{23}+\frac{27\!\cdots\!90}{51\!\cdots\!61}a^{22}-\frac{10\!\cdots\!11}{51\!\cdots\!61}a^{21}-\frac{37\!\cdots\!35}{51\!\cdots\!61}a^{20}+\frac{11\!\cdots\!68}{51\!\cdots\!61}a^{19}+\frac{33\!\cdots\!68}{51\!\cdots\!61}a^{18}-\frac{78\!\cdots\!96}{51\!\cdots\!61}a^{17}-\frac{18\!\cdots\!30}{51\!\cdots\!61}a^{16}+\frac{33\!\cdots\!61}{51\!\cdots\!61}a^{15}+\frac{69\!\cdots\!17}{51\!\cdots\!61}a^{14}-\frac{92\!\cdots\!67}{51\!\cdots\!61}a^{13}-\frac{16\!\cdots\!02}{51\!\cdots\!61}a^{12}+\frac{16\!\cdots\!25}{51\!\cdots\!61}a^{11}+\frac{24\!\cdots\!72}{51\!\cdots\!61}a^{10}-\frac{17\!\cdots\!70}{51\!\cdots\!61}a^{9}-\frac{22\!\cdots\!16}{51\!\cdots\!61}a^{8}+\frac{11\!\cdots\!85}{51\!\cdots\!61}a^{7}+\frac{11\!\cdots\!97}{51\!\cdots\!61}a^{6}-\frac{39\!\cdots\!56}{51\!\cdots\!61}a^{5}-\frac{31\!\cdots\!63}{51\!\cdots\!61}a^{4}+\frac{55\!\cdots\!28}{51\!\cdots\!61}a^{3}+\frac{40\!\cdots\!22}{51\!\cdots\!61}a^{2}-\frac{14\!\cdots\!53}{51\!\cdots\!61}a-\frac{13\!\cdots\!16}{51\!\cdots\!61}$, $\frac{11\!\cdots\!27}{51\!\cdots\!61}a^{26}-\frac{57\!\cdots\!78}{51\!\cdots\!61}a^{25}-\frac{57\!\cdots\!51}{51\!\cdots\!61}a^{24}+\frac{28\!\cdots\!32}{51\!\cdots\!61}a^{23}+\frac{13\!\cdots\!22}{51\!\cdots\!61}a^{22}-\frac{60\!\cdots\!73}{51\!\cdots\!61}a^{21}-\frac{17\!\cdots\!22}{51\!\cdots\!61}a^{20}+\frac{70\!\cdots\!61}{51\!\cdots\!61}a^{19}+\frac{14\!\cdots\!14}{51\!\cdots\!61}a^{18}-\frac{49\!\cdots\!10}{51\!\cdots\!61}a^{17}-\frac{74\!\cdots\!84}{51\!\cdots\!61}a^{16}+\frac{21\!\cdots\!67}{51\!\cdots\!61}a^{15}+\frac{25\!\cdots\!09}{51\!\cdots\!61}a^{14}-\frac{62\!\cdots\!02}{51\!\cdots\!61}a^{13}-\frac{55\!\cdots\!29}{51\!\cdots\!61}a^{12}+\frac{11\!\cdots\!58}{51\!\cdots\!61}a^{11}+\frac{71\!\cdots\!63}{51\!\cdots\!61}a^{10}-\frac{13\!\cdots\!62}{51\!\cdots\!61}a^{9}-\frac{49\!\cdots\!07}{51\!\cdots\!61}a^{8}+\frac{89\!\cdots\!18}{51\!\cdots\!61}a^{7}+\frac{15\!\cdots\!63}{51\!\cdots\!61}a^{6}-\frac{32\!\cdots\!34}{51\!\cdots\!61}a^{5}-\frac{58\!\cdots\!03}{51\!\cdots\!61}a^{4}+\frac{48\!\cdots\!23}{51\!\cdots\!61}a^{3}-\frac{24\!\cdots\!10}{51\!\cdots\!61}a^{2}-\frac{20\!\cdots\!46}{51\!\cdots\!61}a+\frac{22\!\cdots\!82}{51\!\cdots\!61}$, $\frac{13\!\cdots\!66}{51\!\cdots\!61}a^{26}-\frac{80\!\cdots\!81}{51\!\cdots\!61}a^{25}-\frac{63\!\cdots\!82}{51\!\cdots\!61}a^{24}+\frac{40\!\cdots\!70}{51\!\cdots\!61}a^{23}+\frac{12\!\cdots\!10}{51\!\cdots\!61}a^{22}-\frac{84\!\cdots\!62}{51\!\cdots\!61}a^{21}-\frac{13\!\cdots\!34}{51\!\cdots\!61}a^{20}+\frac{99\!\cdots\!10}{51\!\cdots\!61}a^{19}+\frac{88\!\cdots\!42}{51\!\cdots\!61}a^{18}-\frac{71\!\cdots\!97}{51\!\cdots\!61}a^{17}-\frac{30\!\cdots\!73}{51\!\cdots\!61}a^{16}+\frac{32\!\cdots\!85}{51\!\cdots\!61}a^{15}+\frac{24\!\cdots\!95}{51\!\cdots\!61}a^{14}-\frac{98\!\cdots\!05}{51\!\cdots\!61}a^{13}+\frac{20\!\cdots\!81}{51\!\cdots\!61}a^{12}+\frac{19\!\cdots\!75}{51\!\cdots\!61}a^{11}-\frac{85\!\cdots\!51}{51\!\cdots\!61}a^{10}-\frac{23\!\cdots\!38}{51\!\cdots\!61}a^{9}+\frac{14\!\cdots\!68}{51\!\cdots\!61}a^{8}+\frac{17\!\cdots\!32}{51\!\cdots\!61}a^{7}-\frac{12\!\cdots\!42}{51\!\cdots\!61}a^{6}-\frac{63\!\cdots\!49}{51\!\cdots\!61}a^{5}+\frac{53\!\cdots\!50}{51\!\cdots\!61}a^{4}+\frac{95\!\cdots\!25}{51\!\cdots\!61}a^{3}-\frac{82\!\cdots\!92}{51\!\cdots\!61}a^{2}-\frac{53\!\cdots\!34}{51\!\cdots\!61}a+\frac{30\!\cdots\!11}{51\!\cdots\!61}$, $\frac{64\!\cdots\!91}{51\!\cdots\!61}a^{26}-\frac{32\!\cdots\!20}{51\!\cdots\!61}a^{25}-\frac{33\!\cdots\!28}{51\!\cdots\!61}a^{24}+\frac{16\!\cdots\!44}{51\!\cdots\!61}a^{23}+\frac{78\!\cdots\!69}{51\!\cdots\!61}a^{22}-\frac{33\!\cdots\!07}{51\!\cdots\!61}a^{21}-\frac{10\!\cdots\!29}{51\!\cdots\!61}a^{20}+\frac{39\!\cdots\!40}{51\!\cdots\!61}a^{19}+\frac{88\!\cdots\!02}{51\!\cdots\!61}a^{18}-\frac{27\!\cdots\!30}{51\!\cdots\!61}a^{17}-\frac{48\!\cdots\!62}{51\!\cdots\!61}a^{16}+\frac{12\!\cdots\!85}{51\!\cdots\!61}a^{15}+\frac{17\!\cdots\!80}{51\!\cdots\!61}a^{14}-\frac{34\!\cdots\!95}{51\!\cdots\!61}a^{13}-\frac{38\!\cdots\!12}{51\!\cdots\!61}a^{12}+\frac{63\!\cdots\!30}{51\!\cdots\!61}a^{11}+\frac{53\!\cdots\!23}{51\!\cdots\!61}a^{10}-\frac{72\!\cdots\!85}{51\!\cdots\!61}a^{9}-\frac{41\!\cdots\!10}{51\!\cdots\!61}a^{8}+\frac{48\!\cdots\!39}{51\!\cdots\!61}a^{7}+\frac{16\!\cdots\!49}{51\!\cdots\!61}a^{6}-\frac{17\!\cdots\!56}{51\!\cdots\!61}a^{5}-\frac{26\!\cdots\!02}{51\!\cdots\!61}a^{4}+\frac{25\!\cdots\!88}{51\!\cdots\!61}a^{3}+\frac{11\!\cdots\!63}{51\!\cdots\!61}a^{2}-\frac{10\!\cdots\!62}{51\!\cdots\!61}a+\frac{44\!\cdots\!15}{51\!\cdots\!61}$, $\frac{44\!\cdots\!92}{51\!\cdots\!61}a^{26}-\frac{22\!\cdots\!96}{51\!\cdots\!61}a^{25}-\frac{23\!\cdots\!45}{51\!\cdots\!61}a^{24}+\frac{11\!\cdots\!74}{51\!\cdots\!61}a^{23}+\frac{53\!\cdots\!13}{51\!\cdots\!61}a^{22}-\frac{24\!\cdots\!77}{51\!\cdots\!61}a^{21}-\frac{70\!\cdots\!33}{51\!\cdots\!61}a^{20}+\frac{28\!\cdots\!88}{51\!\cdots\!61}a^{19}+\frac{59\!\cdots\!31}{51\!\cdots\!61}a^{18}-\frac{20\!\cdots\!62}{51\!\cdots\!61}a^{17}-\frac{32\!\cdots\!77}{51\!\cdots\!61}a^{16}+\frac{92\!\cdots\!23}{51\!\cdots\!61}a^{15}+\frac{11\!\cdots\!53}{51\!\cdots\!61}a^{14}-\frac{27\!\cdots\!36}{51\!\cdots\!61}a^{13}-\frac{25\!\cdots\!21}{51\!\cdots\!61}a^{12}+\frac{51\!\cdots\!23}{51\!\cdots\!61}a^{11}+\frac{35\!\cdots\!30}{51\!\cdots\!61}a^{10}-\frac{61\!\cdots\!77}{51\!\cdots\!61}a^{9}-\frac{27\!\cdots\!54}{51\!\cdots\!61}a^{8}+\frac{43\!\cdots\!55}{51\!\cdots\!61}a^{7}+\frac{95\!\cdots\!41}{51\!\cdots\!61}a^{6}-\frac{16\!\cdots\!84}{51\!\cdots\!61}a^{5}-\frac{63\!\cdots\!95}{51\!\cdots\!61}a^{4}+\frac{27\!\cdots\!67}{51\!\cdots\!61}a^{3}-\frac{21\!\cdots\!04}{51\!\cdots\!61}a^{2}-\frac{14\!\cdots\!72}{51\!\cdots\!61}a+\frac{19\!\cdots\!81}{51\!\cdots\!61}$, $\frac{93\!\cdots\!55}{51\!\cdots\!61}a^{26}-\frac{53\!\cdots\!39}{51\!\cdots\!61}a^{25}-\frac{45\!\cdots\!54}{51\!\cdots\!61}a^{24}+\frac{26\!\cdots\!22}{51\!\cdots\!61}a^{23}+\frac{95\!\cdots\!16}{51\!\cdots\!61}a^{22}-\frac{57\!\cdots\!18}{51\!\cdots\!61}a^{21}-\frac{11\!\cdots\!95}{51\!\cdots\!61}a^{20}+\frac{68\!\cdots\!89}{51\!\cdots\!61}a^{19}+\frac{85\!\cdots\!10}{51\!\cdots\!61}a^{18}-\frac{49\!\cdots\!68}{51\!\cdots\!61}a^{17}-\frac{40\!\cdots\!43}{51\!\cdots\!61}a^{16}+\frac{23\!\cdots\!91}{51\!\cdots\!61}a^{15}+\frac{11\!\cdots\!48}{51\!\cdots\!61}a^{14}-\frac{69\!\cdots\!25}{51\!\cdots\!61}a^{13}-\frac{18\!\cdots\!78}{51\!\cdots\!61}a^{12}+\frac{13\!\cdots\!04}{51\!\cdots\!61}a^{11}+\frac{92\!\cdots\!10}{51\!\cdots\!61}a^{10}-\frac{16\!\cdots\!93}{51\!\cdots\!61}a^{9}+\frac{16\!\cdots\!10}{51\!\cdots\!61}a^{8}+\frac{12\!\cdots\!45}{51\!\cdots\!61}a^{7}-\frac{27\!\cdots\!21}{51\!\cdots\!61}a^{6}-\frac{45\!\cdots\!62}{51\!\cdots\!61}a^{5}+\frac{14\!\cdots\!84}{51\!\cdots\!61}a^{4}+\frac{73\!\cdots\!86}{51\!\cdots\!61}a^{3}-\frac{24\!\cdots\!44}{51\!\cdots\!61}a^{2}-\frac{38\!\cdots\!36}{51\!\cdots\!61}a+\frac{11\!\cdots\!67}{51\!\cdots\!61}$, $\frac{18\!\cdots\!49}{51\!\cdots\!61}a^{26}-\frac{97\!\cdots\!75}{51\!\cdots\!61}a^{25}-\frac{94\!\cdots\!87}{51\!\cdots\!61}a^{24}+\frac{48\!\cdots\!14}{51\!\cdots\!61}a^{23}+\frac{21\!\cdots\!00}{51\!\cdots\!61}a^{22}-\frac{10\!\cdots\!88}{51\!\cdots\!61}a^{21}-\frac{27\!\cdots\!24}{51\!\cdots\!61}a^{20}+\frac{12\!\cdots\!64}{51\!\cdots\!61}a^{19}+\frac{22\!\cdots\!33}{51\!\cdots\!61}a^{18}-\frac{85\!\cdots\!81}{51\!\cdots\!61}a^{17}-\frac{11\!\cdots\!45}{51\!\cdots\!61}a^{16}+\frac{38\!\cdots\!05}{51\!\cdots\!61}a^{15}+\frac{40\!\cdots\!98}{51\!\cdots\!61}a^{14}-\frac{11\!\cdots\!82}{51\!\cdots\!61}a^{13}-\frac{87\!\cdots\!86}{51\!\cdots\!61}a^{12}+\frac{21\!\cdots\!79}{51\!\cdots\!61}a^{11}+\frac{11\!\cdots\!59}{51\!\cdots\!61}a^{10}-\frac{25\!\cdots\!14}{51\!\cdots\!61}a^{9}-\frac{77\!\cdots\!58}{51\!\cdots\!61}a^{8}+\frac{18\!\cdots\!28}{51\!\cdots\!61}a^{7}+\frac{21\!\cdots\!07}{51\!\cdots\!61}a^{6}-\frac{68\!\cdots\!48}{51\!\cdots\!61}a^{5}+\frac{83\!\cdots\!47}{51\!\cdots\!61}a^{4}+\frac{10\!\cdots\!36}{51\!\cdots\!61}a^{3}-\frac{78\!\cdots\!90}{51\!\cdots\!61}a^{2}-\frac{48\!\cdots\!80}{51\!\cdots\!61}a+\frac{55\!\cdots\!64}{51\!\cdots\!61}$, $\frac{33\!\cdots\!97}{51\!\cdots\!61}a^{26}-\frac{17\!\cdots\!32}{51\!\cdots\!61}a^{25}-\frac{17\!\cdots\!46}{51\!\cdots\!61}a^{24}+\frac{89\!\cdots\!72}{51\!\cdots\!61}a^{23}+\frac{38\!\cdots\!65}{51\!\cdots\!61}a^{22}-\frac{19\!\cdots\!00}{51\!\cdots\!61}a^{21}-\frac{49\!\cdots\!38}{51\!\cdots\!61}a^{20}+\frac{22\!\cdots\!21}{51\!\cdots\!61}a^{19}+\frac{40\!\cdots\!33}{51\!\cdots\!61}a^{18}-\frac{15\!\cdots\!85}{51\!\cdots\!61}a^{17}-\frac{21\!\cdots\!64}{51\!\cdots\!61}a^{16}+\frac{71\!\cdots\!16}{51\!\cdots\!61}a^{15}+\frac{71\!\cdots\!51}{51\!\cdots\!61}a^{14}-\frac{21\!\cdots\!84}{51\!\cdots\!61}a^{13}-\frac{14\!\cdots\!34}{51\!\cdots\!61}a^{12}+\frac{39\!\cdots\!39}{51\!\cdots\!61}a^{11}+\frac{18\!\cdots\!51}{51\!\cdots\!61}a^{10}-\frac{47\!\cdots\!92}{51\!\cdots\!61}a^{9}-\frac{11\!\cdots\!84}{51\!\cdots\!61}a^{8}+\frac{32\!\cdots\!95}{51\!\cdots\!61}a^{7}+\frac{22\!\cdots\!30}{51\!\cdots\!61}a^{6}-\frac{11\!\cdots\!95}{51\!\cdots\!61}a^{5}+\frac{73\!\cdots\!76}{51\!\cdots\!61}a^{4}+\frac{18\!\cdots\!66}{51\!\cdots\!61}a^{3}-\frac{21\!\cdots\!16}{51\!\cdots\!61}a^{2}-\frac{80\!\cdots\!77}{51\!\cdots\!61}a+\frac{11\!\cdots\!15}{51\!\cdots\!61}$, $\frac{13\!\cdots\!67}{51\!\cdots\!61}a^{26}-\frac{98\!\cdots\!53}{51\!\cdots\!61}a^{25}-\frac{58\!\cdots\!17}{51\!\cdots\!61}a^{24}+\frac{49\!\cdots\!35}{51\!\cdots\!61}a^{23}+\frac{94\!\cdots\!14}{51\!\cdots\!61}a^{22}-\frac{10\!\cdots\!05}{51\!\cdots\!61}a^{21}-\frac{67\!\cdots\!82}{51\!\cdots\!61}a^{20}+\frac{12\!\cdots\!69}{51\!\cdots\!61}a^{19}+\frac{57\!\cdots\!35}{51\!\cdots\!61}a^{18}-\frac{97\!\cdots\!95}{51\!\cdots\!61}a^{17}+\frac{27\!\cdots\!81}{51\!\cdots\!61}a^{16}+\frac{47\!\cdots\!75}{51\!\cdots\!61}a^{15}-\frac{22\!\cdots\!89}{51\!\cdots\!61}a^{14}-\frac{14\!\cdots\!75}{51\!\cdots\!61}a^{13}+\frac{89\!\cdots\!46}{51\!\cdots\!61}a^{12}+\frac{30\!\cdots\!57}{51\!\cdots\!61}a^{11}-\frac{20\!\cdots\!90}{51\!\cdots\!61}a^{10}-\frac{40\!\cdots\!55}{51\!\cdots\!61}a^{9}+\frac{28\!\cdots\!91}{51\!\cdots\!61}a^{8}+\frac{30\!\cdots\!06}{51\!\cdots\!61}a^{7}-\frac{21\!\cdots\!15}{51\!\cdots\!61}a^{6}-\frac{12\!\cdots\!15}{51\!\cdots\!61}a^{5}+\frac{84\!\cdots\!10}{51\!\cdots\!61}a^{4}+\frac{21\!\cdots\!55}{51\!\cdots\!61}a^{3}-\frac{12\!\cdots\!69}{51\!\cdots\!61}a^{2}-\frac{12\!\cdots\!77}{51\!\cdots\!61}a+\frac{54\!\cdots\!25}{51\!\cdots\!61}$, $\frac{12\!\cdots\!55}{51\!\cdots\!61}a^{26}-\frac{51\!\cdots\!14}{51\!\cdots\!61}a^{25}-\frac{73\!\cdots\!37}{51\!\cdots\!61}a^{24}+\frac{25\!\cdots\!57}{51\!\cdots\!61}a^{23}+\frac{18\!\cdots\!69}{51\!\cdots\!61}a^{22}-\frac{51\!\cdots\!48}{51\!\cdots\!61}a^{21}-\frac{26\!\cdots\!62}{51\!\cdots\!61}a^{20}+\frac{56\!\cdots\!34}{51\!\cdots\!61}a^{19}+\frac{24\!\cdots\!33}{51\!\cdots\!61}a^{18}-\frac{35\!\cdots\!62}{51\!\cdots\!61}a^{17}-\frac{14\!\cdots\!71}{51\!\cdots\!61}a^{16}+\frac{13\!\cdots\!61}{51\!\cdots\!61}a^{15}+\frac{53\!\cdots\!35}{51\!\cdots\!61}a^{14}-\frac{32\!\cdots\!22}{51\!\cdots\!61}a^{13}-\frac{12\!\cdots\!63}{51\!\cdots\!61}a^{12}+\frac{44\!\cdots\!80}{51\!\cdots\!61}a^{11}+\frac{19\!\cdots\!74}{51\!\cdots\!61}a^{10}-\frac{32\!\cdots\!66}{51\!\cdots\!61}a^{9}-\frac{18\!\cdots\!03}{51\!\cdots\!61}a^{8}+\frac{96\!\cdots\!69}{51\!\cdots\!61}a^{7}+\frac{10\!\cdots\!18}{51\!\cdots\!61}a^{6}+\frac{16\!\cdots\!66}{51\!\cdots\!61}a^{5}-\frac{30\!\cdots\!91}{51\!\cdots\!61}a^{4}-\frac{14\!\cdots\!83}{51\!\cdots\!61}a^{3}+\frac{41\!\cdots\!87}{51\!\cdots\!61}a^{2}+\frac{17\!\cdots\!77}{51\!\cdots\!61}a-\frac{16\!\cdots\!66}{51\!\cdots\!61}$, $\frac{22\!\cdots\!48}{51\!\cdots\!61}a^{26}-\frac{12\!\cdots\!84}{51\!\cdots\!61}a^{25}-\frac{11\!\cdots\!44}{51\!\cdots\!61}a^{24}+\frac{61\!\cdots\!52}{51\!\cdots\!61}a^{23}+\frac{25\!\cdots\!89}{51\!\cdots\!61}a^{22}-\frac{13\!\cdots\!58}{51\!\cdots\!61}a^{21}-\frac{32\!\cdots\!98}{51\!\cdots\!61}a^{20}+\frac{15\!\cdots\!11}{51\!\cdots\!61}a^{19}+\frac{26\!\cdots\!65}{51\!\cdots\!61}a^{18}-\frac{10\!\cdots\!88}{51\!\cdots\!61}a^{17}-\frac{13\!\cdots\!01}{51\!\cdots\!61}a^{16}+\frac{49\!\cdots\!97}{51\!\cdots\!61}a^{15}+\frac{44\!\cdots\!11}{51\!\cdots\!61}a^{14}-\frac{14\!\cdots\!35}{51\!\cdots\!61}a^{13}-\frac{90\!\cdots\!83}{51\!\cdots\!61}a^{12}+\frac{27\!\cdots\!02}{51\!\cdots\!61}a^{11}+\frac{10\!\cdots\!64}{51\!\cdots\!61}a^{10}-\frac{32\!\cdots\!72}{51\!\cdots\!61}a^{9}-\frac{49\!\cdots\!57}{51\!\cdots\!61}a^{8}+\frac{22\!\cdots\!34}{51\!\cdots\!61}a^{7}-\frac{76\!\cdots\!91}{51\!\cdots\!61}a^{6}-\frac{80\!\cdots\!96}{51\!\cdots\!61}a^{5}+\frac{14\!\cdots\!96}{51\!\cdots\!61}a^{4}+\frac{12\!\cdots\!66}{51\!\cdots\!61}a^{3}-\frac{29\!\cdots\!95}{51\!\cdots\!61}a^{2}-\frac{58\!\cdots\!53}{51\!\cdots\!61}a+\frac{13\!\cdots\!44}{51\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 43333147066107930 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{27}\cdot(2\pi)^{0}\cdot 43333147066107930 \cdot 1}{2\cdot\sqrt{550892378962365588304561118053988796799287710804809}}\cr\approx \mathstrut & 0.123898696079419 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 - 6*x^26 - 47*x^25 + 302*x^24 + 943*x^23 - 6448*x^22 - 10567*x^21 + 76481*x^20 + 71695*x^19 - 556066*x^18 - 291044*x^17 + 2587104*x^16 + 603975*x^15 - 7811439*x^14 - 35156*x^13 + 15161145*x^12 - 2848142*x^11 - 18230502*x^10 + 6439289*x^9 + 12558384*x^8 - 6282221*x^7 - 4210683*x^6 + 2778704*x^5 + 421825*x^4 - 457387*x^3 + 20126*x^2 + 21522*x - 2699);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times C_9$ (as 27T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 27
The 27 conjugacy class representatives for $C_3\times C_9$
Character table for $C_3\times C_9$

Intermediate fields

3.3.169.1, 3.3.361.1, 3.3.61009.2, 3.3.61009.1, 9.9.227081481823729.1, 9.9.81976414938366169.2, 9.9.81976414938366169.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }^{3}$ ${\href{/padicField/3.9.0.1}{9} }^{3}$ ${\href{/padicField/5.9.0.1}{9} }^{3}$ ${\href{/padicField/7.3.0.1}{3} }^{9}$ ${\href{/padicField/11.3.0.1}{3} }^{9}$ R ${\href{/padicField/17.9.0.1}{9} }^{3}$ R ${\href{/padicField/23.9.0.1}{9} }^{3}$ ${\href{/padicField/29.9.0.1}{9} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{9}$ ${\href{/padicField/37.3.0.1}{3} }^{9}$ ${\href{/padicField/41.9.0.1}{9} }^{3}$ ${\href{/padicField/43.9.0.1}{9} }^{3}$ ${\href{/padicField/47.9.0.1}{9} }^{3}$ ${\href{/padicField/53.9.0.1}{9} }^{3}$ ${\href{/padicField/59.9.0.1}{9} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display Deg $27$$3$$9$$18$
\(19\) Copy content Toggle raw display Deg $27$$9$$3$$24$