Properties

Label 27.1.458...803.1
Degree $27$
Signature $[1, 13]$
Discriminant $-4.587\times 10^{55}$
Root discriminant \(115.22\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{27}$ (as 27T2392)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 + 5*x - 1)
 
gp: K = bnfinit(y^27 + 5*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 + 5*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 + 5*x - 1)
 

\( x^{27} + 5x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-45866665096634308772626296247537769948249630619149892803\) \(\medspace = -\,83\cdot 563\cdot 796853\cdot 12\!\cdots\!19\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(115.22\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $83^{1/2}563^{1/2}796853^{1/2}1231778062127328031049100178271442365420402719^{1/2}\approx 6.772493270327724e+27$
Ramified primes:   \(83\), \(563\), \(796853\), \(12317\!\cdots\!02719\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-45866\!\cdots\!92803}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{26}+5$, $8a^{26}+10a^{25}+9a^{24}+4a^{23}-3a^{22}-10a^{21}-14a^{20}-13a^{19}-7a^{18}+3a^{17}+13a^{16}+19a^{15}+18a^{14}+10a^{13}-3a^{12}-16a^{11}-24a^{10}-24a^{9}-14a^{8}+2a^{7}+17a^{6}+30a^{5}+31a^{4}+21a^{3}+4a^{2}-19a+4$, $15a^{26}-11a^{25}-7a^{24}+19a^{23}-10a^{22}-10a^{21}+24a^{20}-10a^{19}-17a^{18}+28a^{17}-11a^{16}-24a^{15}+33a^{14}-8a^{13}-28a^{12}+40a^{11}-4a^{10}-37a^{9}+44a^{8}-2a^{7}-52a^{6}+49a^{5}+5a^{4}-66a^{3}+61a^{2}+17a-4$, $11a^{26}-17a^{25}+14a^{24}-7a^{23}-3a^{22}+14a^{21}-18a^{20}+15a^{19}-a^{18}-16a^{17}+30a^{16}-39a^{15}+32a^{14}-13a^{13}-19a^{12}+51a^{11}-68a^{10}+73a^{9}-51a^{8}+11a^{7}+38a^{6}-83a^{5}+97a^{4}-90a^{3}+53a^{2}+6a-4$, $4a^{26}+4a^{25}+11a^{24}+13a^{23}+8a^{22}+9a^{21}+16a^{20}+15a^{19}+11a^{18}+14a^{17}+13a^{16}+11a^{15}+19a^{14}+20a^{13}+7a^{12}+4a^{11}+16a^{10}+14a^{9}-3a^{8}-2a^{7}+7a^{6}-3a^{5}-11a^{4}-10a^{3}-25a^{2}-33a+7$, $27a^{26}+68a^{25}+58a^{24}+16a^{23}-34a^{22}-69a^{21}-41a^{20}+20a^{19}+70a^{18}+87a^{17}+27a^{16}-64a^{15}-120a^{14}-122a^{13}-32a^{12}+82a^{11}+131a^{10}+112a^{9}-4a^{8}-125a^{7}-133a^{6}-62a^{5}+97a^{4}+234a^{3}+189a^{2}+48a-21$, $31a^{26}+11a^{25}-14a^{24}-14a^{23}+14a^{22}+39a^{21}+32a^{20}-a^{19}-24a^{18}-3a^{17}+45a^{16}+64a^{15}+30a^{14}-33a^{13}-55a^{12}-4a^{11}+73a^{10}+94a^{9}+21a^{8}-73a^{7}-101a^{6}-22a^{5}+85a^{4}+95a^{3}-3a^{2}-120a+24$, $45a^{26}+14a^{25}-13a^{24}-49a^{23}-66a^{22}-51a^{21}-35a^{20}+22a^{19}+49a^{18}+94a^{17}+73a^{16}+48a^{15}-10a^{14}-74a^{13}-100a^{12}-126a^{11}-56a^{10}-16a^{9}+97a^{8}+128a^{7}+155a^{6}+113a^{5}+9a^{4}-73a^{3}-205a^{2}-169a+42$, $3a^{26}+3a^{24}-a^{23}-3a^{21}-a^{20}+a^{19}-a^{18}-2a^{16}-2a^{15}-6a^{14}-6a^{13}-a^{12}-4a^{11}+2a^{10}-9a^{9}-11a^{7}-4a^{6}-11a^{5}+3a^{3}-7a^{2}+a+2$, $5a^{26}+20a^{25}-11a^{24}+22a^{23}-71a^{22}+28a^{21}+17a^{20}+35a^{19}-23a^{18}-26a^{17}+19a^{16}-63a^{15}+94a^{14}-4a^{13}+25a^{12}-117a^{11}+26a^{10}+42a^{9}-24a^{8}+94a^{7}-85a^{6}+10a^{5}-164a^{4}+205a^{3}+17a^{2}-23a+1$, $13a^{26}+10a^{25}-7a^{24}-6a^{23}+14a^{22}+18a^{21}+a^{20}-3a^{19}+11a^{18}+11a^{17}-2a^{16}+6a^{15}+24a^{14}+8a^{13}-23a^{12}-8a^{11}+34a^{10}+25a^{9}-24a^{8}-26a^{7}+16a^{6}+15a^{5}-24a^{4}-14a^{3}+26a^{2}-3a-1$, $135a^{26}-44a^{25}+83a^{24}-155a^{23}+11a^{22}-2a^{21}+67a^{20}+121a^{19}-156a^{18}+46a^{17}-225a^{16}+242a^{15}-24a^{14}+140a^{13}-127a^{12}-195a^{11}+120a^{10}-102a^{9}+444a^{8}-301a^{7}+137a^{6}-431a^{5}+164a^{4}+215a^{3}+46a^{2}+239a-49$, $58a^{26}+63a^{25}-55a^{24}-17a^{23}+5a^{22}-76a^{21}-8a^{20}+78a^{19}+87a^{18}-49a^{17}-19a^{16}+32a^{15}-157a^{14}-32a^{13}+134a^{12}+84a^{11}-18a^{10}-2a^{9}+52a^{8}-234a^{7}-115a^{6}+233a^{5}+48a^{4}+8a^{3}+112a^{2}+26a-9$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 96868394873426400 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 96868394873426400 \cdot 1}{2\cdot\sqrt{45866665096634308772626296247537769948249630619149892803}}\cr\approx \mathstrut & 0.340229377031490 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 + 5*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 + 5*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 + 5*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 + 5*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{27}$ (as 27T2392):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 10888869450418352160768000000
The 3010 conjugacy class representatives for $S_{27}$ are not computed
Character table for $S_{27}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23{,}\,{\href{/padicField/2.4.0.1}{4} }$ ${\href{/padicField/3.9.0.1}{9} }^{3}$ $18{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ $24{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $24{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ $27$ $25{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ $24{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ $18{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.13.0.1}{13} }{,}\,{\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.13.0.1}{13} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(83\) Copy content Toggle raw display $\Q_{83}$$x + 81$$1$$1$$0$Trivial$[\ ]$
83.2.1.1$x^{2} + 166$$2$$1$$1$$C_2$$[\ ]_{2}$
83.2.0.1$x^{2} + 82 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.5.0.1$x^{5} + 9 x + 81$$1$$5$$0$$C_5$$[\ ]^{5}$
83.17.0.1$x^{17} + 7 x + 81$$1$$17$$0$$C_{17}$$[\ ]^{17}$
\(563\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $25$$1$$25$$0$$C_{25}$$[\ ]^{25}$
\(796853\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $23$$1$$23$$0$$C_{23}$$[\ ]^{23}$
\(123\!\cdots\!719\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$