Properties

Label 27.1.112...771.1
Degree $27$
Signature $[1, 13]$
Discriminant $-1.120\times 10^{53}$
Root discriminant \(92.21\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{27}$ (as 27T2392)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^27 + 4*x - 3)
 
gp: K = bnfinit(y^27 + 4*y - 3, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^27 + 4*x - 3);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 + 4*x - 3)
 

\( x^{27} + 4x - 3 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $27$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-112025922027717580491467365903199704881290362951387771\) \(\medspace = -\,11854057\cdot 94\!\cdots\!03\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(92.21\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11854057^{1/2}9450428830207040550882062225886015638467940803^{1/2}\approx 3.347027368094225e+26$
Ramified primes:   \(11854057\), \(94504\!\cdots\!40803\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-11202\!\cdots\!87771}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{26}-a^{25}+a^{24}+a^{23}-2a^{22}+a^{20}-a^{19}+a^{18}+a^{17}-2a^{16}+a^{14}-3a^{13}+a^{12}+4a^{11}-3a^{10}+3a^{8}-4a^{7}+3a^{5}-2a^{4}+a^{3}+4a^{2}-6a+2$, $a^{26}-a^{25}+a^{24}-a^{23}+a^{22}-a^{21}+a^{20}-a^{19}+a^{18}-a^{17}+a^{16}-a^{15}+a^{14}-a^{13}+a^{12}-a^{11}+a^{10}-a^{9}+a^{8}-a^{7}+a^{6}-a^{5}+a^{4}-a^{3}+3a-2$, $7a^{26}+7a^{25}+8a^{24}+10a^{23}+10a^{22}+10a^{21}+12a^{20}+12a^{19}+12a^{18}+13a^{17}+11a^{16}+12a^{15}+13a^{14}+9a^{13}+9a^{12}+10a^{11}+6a^{10}+5a^{9}+7a^{8}+a^{7}-2a^{6}+4a^{5}-3a^{4}-9a^{3}-2a^{2}-7a+16$, $2a^{26}-a^{25}-3a^{24}-3a^{23}+3a^{21}+3a^{20}+3a^{19}-5a^{18}-3a^{17}-10a^{16}+3a^{15}-2a^{14}+12a^{13}+5a^{11}-10a^{10}+a^{9}-9a^{8}+14a^{7}-a^{6}+16a^{5}-11a^{4}-19a^{2}-2a+8$, $28a^{26}+21a^{25}+15a^{24}+12a^{23}+8a^{22}+8a^{21}+5a^{20}+4a^{19}+2a^{18}+3a^{17}+2a^{16}+2a^{15}+2a^{12}+2a^{10}-3a^{9}+2a^{8}+a^{6}+a^{5}-5a^{4}+6a^{3}-5a^{2}+6a+106$, $32a^{26}+23a^{25}+16a^{24}+15a^{23}+9a^{22}+5a^{21}+9a^{20}+5a^{19}+4a^{17}+a^{16}-2a^{15}+6a^{14}+2a^{13}-5a^{12}+3a^{11}+a^{10}-5a^{9}+6a^{8}+2a^{7}-9a^{6}+3a^{5}+2a^{4}-8a^{3}+8a^{2}+5a+115$, $5a^{26}+3a^{25}-2a^{24}+9a^{23}+4a^{22}-6a^{20}-2a^{19}+9a^{18}-a^{17}-a^{16}-12a^{15}+9a^{14}+5a^{13}+2a^{12}-10a^{11}-8a^{10}+15a^{9}+a^{8}+4a^{7}-23a^{6}+11a^{5}+9a^{4}+10a^{3}-12a^{2}-19a+43$, $a^{26}+3a^{25}-3a^{23}+4a^{21}+3a^{20}-2a^{19}-3a^{18}+2a^{17}+7a^{16}+3a^{15}-4a^{14}-3a^{13}+5a^{12}+7a^{11}-6a^{9}+9a^{7}+5a^{6}-7a^{5}-8a^{4}+4a^{3}+11a^{2}+3a-8$, $2a^{25}+2a^{24}-3a^{23}+2a^{22}-5a^{20}+9a^{19}-2a^{18}-2a^{17}-a^{16}+2a^{15}-4a^{14}+7a^{13}+3a^{12}-15a^{11}+10a^{10}-3a^{9}+a^{8}+2a^{7}+4a^{6}-15a^{5}+5a^{4}+12a^{3}-21a^{2}+21a-8$, $53a^{26}+39a^{25}+30a^{24}+23a^{23}+16a^{22}+13a^{21}+10a^{20}+7a^{19}+7a^{18}+2a^{17}+5a^{16}+2a^{15}+2a^{14}+2a^{13}+2a^{11}+2a^{8}-2a^{7}+2a^{6}-2a^{5}+a^{4}+a^{3}-4a^{2}+4a+208$, $3a^{26}+7a^{25}-4a^{24}-3a^{23}-6a^{22}-a^{21}+5a^{20}-6a^{19}+3a^{18}+2a^{17}+8a^{16}+8a^{15}-13a^{14}-a^{13}-6a^{12}+3a^{11}+2a^{10}-16a^{9}+13a^{8}+5a^{7}+14a^{6}-23a^{4}+13a^{3}-9a^{2}+4a+1$, $5a^{26}+2a^{25}+2a^{24}-3a^{23}-5a^{22}-5a^{21}-2a^{20}-a^{19}+7a^{18}+8a^{17}+8a^{16}+7a^{15}+3a^{14}-5a^{13}-5a^{12}-6a^{11}-7a^{10}+3a^{9}+7a^{8}+9a^{7}+11a^{6}+11a^{5}-5a^{4}-2a^{3}-11a^{2}-12a+11$, $11a^{26}+7a^{25}+22a^{24}-12a^{23}+a^{22}-11a^{21}-10a^{20}+24a^{19}-4a^{18}+27a^{17}-6a^{16}-21a^{15}+2a^{14}-37a^{13}+30a^{12}+3a^{11}+9a^{10}+25a^{9}-56a^{8}+12a^{7}-44a^{6}+3a^{5}+49a^{4}-30a^{3}+62a^{2}-65a+22$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15803550655935504 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{13}\cdot 15803550655935504 \cdot 1}{2\cdot\sqrt{112025922027717580491467365903199704881290362951387771}}\cr\approx \mathstrut & 1.12313949130119 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^27 + 4*x - 3)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^27 + 4*x - 3, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^27 + 4*x - 3);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^27 + 4*x - 3);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{27}$ (as 27T2392):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 10888869450418352160768000000
The 3010 conjugacy class representatives for $S_{27}$
Character table for $S_{27}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $18{,}\,{\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.2.0.1}{2} }{,}\,{\href{/padicField/2.1.0.1}{1} }$ ${\href{/padicField/3.6.0.1}{6} }^{4}{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ $27$ $18{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ $20{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ $20{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $26{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.13.0.1}{13} }$ $23{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ $25{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ $20{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ $18{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ $17{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11854057\) Copy content Toggle raw display $\Q_{11854057}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{11854057}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $19$$1$$19$$0$$C_{19}$$[\ ]^{19}$
\(945\!\cdots\!803\) Copy content Toggle raw display $\Q_{94\!\cdots\!03}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{94\!\cdots\!03}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$