Properties

Label 26.2.212...232.1
Degree $26$
Signature $[2, 12]$
Discriminant $2.125\times 10^{44}$
Root discriminant \(50.69\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{26}$ (as 26T96)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 2*x - 2)
 
gp: K = bnfinit(y^26 - 2*y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 2*x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 2*x - 2)
 

\( x^{26} - 2x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(212525560315468668398429873236273026387935232\) \(\medspace = 2^{26}\cdot 3\cdot 67\cdot 107\cdot 5867\cdot 10536636742939\cdot 2381953897662043\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(50.69\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(67\), \(107\), \(5867\), \(10536636742939\), \(2381953897662043\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{31668\!\cdots\!67513}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a+1$, $a^{9}-a-1$, $a^{13}-a-1$, $a^{17}-a^{16}+a^{14}-a^{11}+a^{10}+a^{9}-2a^{8}+a^{6}-a^{4}-a^{3}+a^{2}-1$, $a^{25}-a^{23}+a^{22}-a^{20}+a^{19}-a^{17}+a^{16}-a^{14}+a^{12}-a^{10}+a^{9}-a^{7}+a^{6}-a^{4}+a^{3}-2a-1$, $a^{15}-a^{13}+a^{10}-a^{9}+a^{7}-a^{4}+1$, $a^{25}-a^{23}+2a^{22}-2a^{21}+2a^{20}-a^{19}+a^{17}-2a^{16}+2a^{15}-2a^{14}+a^{13}-a^{12}-a^{9}+a^{8}-a^{7}+a^{6}-a^{5}+a^{4}+a-3$, $a^{25}-a^{24}+a^{22}-a^{19}+a^{18}-2a^{17}+2a^{16}+a^{14}-2a^{13}+a^{12}-2a^{11}+a^{10}+a^{9}+a^{8}-a^{7}-a^{5}-a^{4}+2a^{3}+a^{2}-3$, $a^{25}-a^{24}+a^{23}-a^{19}+a^{18}-a^{17}-a^{16}+a^{15}-a^{14}+a^{13}+a^{11}+a^{10}-a^{9}+a^{8}-2a^{6}-a^{4}-a^{2}+1$, $a^{25}-a^{24}-2a^{22}+a^{19}+a^{18}+a^{17}-a^{15}-a^{14}-a^{13}-a^{12}+a^{11}+a^{10}+2a^{9}+a^{8}-2a^{6}-3a^{5}-a^{4}-a^{3}+3a^{2}+3a+1$, $a^{22}+a^{20}+a^{17}+a^{15}+a^{14}-a^{13}+a^{12}-a^{11}+a^{9}-a^{8}-a^{6}-2a^{5}-a^{3}-1$, $a^{23}-2a^{22}+2a^{21}-a^{20}-a^{19}+2a^{18}-2a^{17}+2a^{16}-2a^{15}+2a^{14}-a^{13}-a^{12}+a^{11}-2a^{9}+3a^{8}-2a^{7}+a^{6}-a^{4}+a^{3}-2a^{2}+2a-1$, $3a^{25}-a^{24}+2a^{22}-3a^{21}+5a^{20}-5a^{19}+6a^{18}-5a^{17}+5a^{16}-3a^{15}+3a^{14}-a^{13}+a^{12}+a^{11}+a^{9}+a^{7}+a^{6}+a^{4}+a^{3}+2a-7$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1482708296476.7107 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{12}\cdot 1482708296476.7107 \cdot 1}{2\cdot\sqrt{212525560315468668398429873236273026387935232}}\cr\approx \mathstrut & 0.770084795314214 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 2*x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 2*x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 2*x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 2*x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{26}$ (as 26T96):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 403291461126605635584000000
The 2436 conjugacy class representatives for $S_{26}$ are not computed
Character table for $S_{26}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ $16{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ $24{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ $18{,}\,{\href{/padicField/19.8.0.1}{8} }$ $26$ ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.8.0.1}{8} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.13.0.1}{13} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.13.0.1}{13} }{,}\,{\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.13.0.1}{13} }{,}\,{\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ $15{,}\,{\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ $15{,}\,{\href{/padicField/53.11.0.1}{11} }$ $17{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $26$$26$$1$$26$
\(3\) Copy content Toggle raw display 3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.0.1$x^{4} + 2 x^{3} + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.20.0.1$x^{20} + 2 x^{13} + x^{11} + x^{10} + x^{9} + x^{8} + 2 x^{5} + 2 x^{4} + 2 x^{3} + x + 2$$1$$20$$0$20T1$[\ ]^{20}$
\(67\) Copy content Toggle raw display $\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
67.2.1.1$x^{2} + 134$$2$$1$$1$$C_2$$[\ ]_{2}$
67.3.0.1$x^{3} + 6 x + 65$$1$$3$$0$$C_3$$[\ ]^{3}$
67.20.0.1$x^{20} - 2 x + 7$$1$$20$$0$20T1$[\ ]^{20}$
\(107\) Copy content Toggle raw display $\Q_{107}$$x + 105$$1$$1$$0$Trivial$[\ ]$
$\Q_{107}$$x + 105$$1$$1$$0$Trivial$[\ ]$
107.2.0.1$x^{2} + 103 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
107.2.1.2$x^{2} + 107$$2$$1$$1$$C_2$$[\ ]_{2}$
107.4.0.1$x^{4} + 13 x^{2} + 79 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
107.8.0.1$x^{8} + 2 x^{4} + 105 x^{3} + 24 x^{2} + 95 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
107.8.0.1$x^{8} + 2 x^{4} + 105 x^{3} + 24 x^{2} + 95 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
\(5867\) Copy content Toggle raw display $\Q_{5867}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $18$$1$$18$$0$$C_{18}$$[\ ]^{18}$
\(10536636742939\) Copy content Toggle raw display $\Q_{10536636742939}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
\(2381953897662043\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$