Properties

Label 26.2.132...857.1
Degree $26$
Signature $[2, 12]$
Discriminant $1.323\times 10^{53}$
Root discriminant \(110.44\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{26}$ (as 26T96)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 5*x - 2)
 
gp: K = bnfinit(y^26 - 5*y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 5*x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 5*x - 2)
 

\( x^{26} - 5x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(132348898215049523817354996629623929806802964132075857\) \(\medspace = 3\cdot 19\cdot 41\cdot 443\cdot 1481\cdot 8314099\cdot 221768083\cdot 2040445848379\cdot 22943703711693769\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(110.44\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}19^{1/2}41^{1/2}443^{1/2}1481^{1/2}8314099^{1/2}221768083^{1/2}2040445848379^{1/2}22943703711693769^{1/2}\approx 3.637978809930722e+26$
Ramified primes:   \(3\), \(19\), \(41\), \(443\), \(1481\), \(8314099\), \(221768083\), \(2040445848379\), \(22943703711693769\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{13234\!\cdots\!75857}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $6a^{24}+9a^{23}+8a^{22}-3a^{21}-11a^{20}-14a^{19}-8a^{18}+7a^{17}+14a^{16}+15a^{15}+5a^{14}-9a^{13}-12a^{12}-13a^{11}-3a^{10}+4a^{9}+6a^{8}+12a^{7}+10a^{6}+12a^{5}+5a^{4}-15a^{3}-27a^{2}-36a-11$, $77a^{25}-23a^{24}+6a^{23}+4a^{22}-8a^{21}+6a^{20}-10a^{19}+8a^{18}-5a^{17}+10a^{16}-a^{15}+5a^{14}-3a^{13}-4a^{12}-3a^{11}-7a^{10}+7a^{9}-5a^{8}+17a^{7}-11a^{6}+14a^{5}-26a^{4}+10a^{3}-31a^{2}+23a-405$, $78a^{25}-30a^{24}+11a^{23}-4a^{22}+a^{20}+a^{18}-a^{17}-2a^{16}+3a^{15}-3a^{14}+4a^{13}-2a^{12}-a^{11}+a^{9}-2a^{7}+4a^{6}-6a^{5}+6a^{4}-3a^{3}-2a^{2}+a-391$, $3a^{25}-3a^{24}-3a^{23}+4a^{22}+2a^{21}-4a^{20}-a^{19}+5a^{18}-a^{17}-4a^{16}+6a^{15}+4a^{14}-9a^{13}-7a^{12}+6a^{11}+3a^{10}-5a^{9}+7a^{8}+9a^{7}-13a^{6}-15a^{5}+8a^{4}+9a^{3}-7a^{2}+4a+3$, $9a^{25}-6a^{24}-7a^{23}+13a^{22}-2a^{21}-11a^{20}+13a^{19}+a^{18}-16a^{17}+14a^{16}+8a^{15}-20a^{14}+8a^{13}+11a^{12}-26a^{11}+6a^{10}+25a^{9}-22a^{8}-4a^{7}+29a^{6}-24a^{5}-12a^{4}+43a^{3}-15a^{2}-33a-7$, $a^{25}-4a^{24}+a^{22}-3a^{21}-3a^{20}-a^{19}-7a^{16}-a^{15}+a^{14}-2a^{13}-5a^{12}-7a^{11}+3a^{10}-a^{9}-10a^{8}-6a^{7}-2a^{6}+a^{5}-10a^{4}-15a^{3}+2a^{2}-4a-13$, $8a^{25}+7a^{24}+2a^{23}-7a^{22}-5a^{21}-2a^{20}-a^{19}-10a^{18}-20a^{17}-18a^{16}-10a^{15}-4a^{14}-14a^{13}-20a^{12}-16a^{11}+5a^{10}+18a^{9}+10a^{8}+3a^{7}+9a^{6}+39a^{5}+52a^{4}+41a^{3}+17a^{2}+20a+5$, $4a^{25}+a^{24}-2a^{23}-6a^{21}-a^{20}+4a^{19}-5a^{18}-a^{17}+a^{16}-a^{15}+11a^{14}+3a^{13}-7a^{12}+3a^{11}-5a^{10}-3a^{9}+5a^{8}-18a^{7}-10a^{6}+11a^{5}+10a^{3}+6a^{2}-12a-5$, $17a^{25}-21a^{23}-5a^{22}+22a^{21}+9a^{20}-24a^{19}-14a^{18}+25a^{17}+20a^{16}-24a^{15}-25a^{14}+27a^{13}+36a^{12}-22a^{11}-43a^{10}+20a^{9}+56a^{8}-11a^{7}-63a^{6}+2a^{5}+70a^{4}+5a^{3}-84a^{2}-23a+3$, $23a^{25}+8a^{24}-14a^{23}-9a^{22}+18a^{21}+31a^{20}+12a^{19}-17a^{18}-14a^{17}+24a^{16}+45a^{15}+17a^{14}-21a^{13}-17a^{12}+28a^{11}+61a^{10}+34a^{9}-26a^{8}-32a^{7}+37a^{6}+91a^{5}+53a^{4}-32a^{3}-50a^{2}+44a+23$, $2a^{25}-a^{24}+12a^{23}+15a^{22}-3a^{21}+23a^{20}+19a^{19}+8a^{18}+29a^{17}+3a^{16}+a^{15}+27a^{14}-9a^{13}-8a^{12}-3a^{11}-45a^{10}-14a^{9}-16a^{8}-66a^{7}-30a^{6}-46a^{5}-58a^{4}+9a^{3}-39a^{2}-40a+27$, $40a^{25}-29a^{24}+21a^{23}-9a^{21}+7a^{20}+6a^{19}-19a^{18}-4a^{17}+23a^{16}+6a^{15}-17a^{14}-7a^{13}+7a^{12}+2a^{11}-4a^{10}+8a^{9}+12a^{8}-18a^{7}-22a^{6}+27a^{5}+18a^{4}-40a^{3}+5a^{2}+57a-233$, $1229a^{25}-491a^{24}+206a^{23}-78a^{22}+22a^{21}-17a^{20}+14a^{19}+6a^{18}-4a^{17}-6a^{16}+6a^{15}+5a^{14}-9a^{13}-7a^{12}+14a^{11}+17a^{10}-10a^{9}-24a^{8}+2a^{7}+26a^{6}+8a^{5}-17a^{4}-3a^{3}+19a^{2}-6171$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 85063692836779780 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{12}\cdot 85063692836779780 \cdot 1}{2\cdot\sqrt{132348898215049523817354996629623929806802964132075857}}\cr\approx \mathstrut & 1.77040441313123 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 5*x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 5*x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 5*x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 5*x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{26}$ (as 26T96):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 403291461126605635584000000
The 2436 conjugacy class representatives for $S_{26}$ are not computed
Character table for $S_{26}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20{,}\,{\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ R ${\href{/padicField/5.4.0.1}{4} }^{6}{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ $22{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ $24{,}\,{\href{/padicField/13.2.0.1}{2} }$ $15{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ R ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.13.0.1}{13} }{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $25{,}\,{\href{/padicField/37.1.0.1}{1} }$ R $24{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ $15{,}\,{\href{/padicField/53.11.0.1}{11} }$ ${\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.4.0.1$x^{4} + 2 x^{3} + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.20.0.1$x^{20} + 2 x^{13} + x^{11} + x^{10} + x^{9} + x^{8} + 2 x^{5} + 2 x^{4} + 2 x^{3} + x + 2$$1$$20$$0$20T1$[\ ]^{20}$
\(19\) Copy content Toggle raw display 19.2.1.1$x^{2} + 38$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $24$$1$$24$$0$$C_{24}$$[\ ]^{24}$
\(41\) Copy content Toggle raw display $\Q_{41}$$x + 35$$1$$1$$0$Trivial$[\ ]$
41.2.1.2$x^{2} + 123$$2$$1$$1$$C_2$$[\ ]_{2}$
41.5.0.1$x^{5} + 40 x^{2} + 14 x + 35$$1$$5$$0$$C_5$$[\ ]^{5}$
41.18.0.1$x^{18} + x^{11} + 7 x^{10} + 20 x^{9} + 23 x^{8} + 35 x^{7} + 38 x^{6} + 24 x^{5} + 12 x^{4} + 29 x^{3} + 10 x^{2} + 6 x + 6$$1$$18$$0$$C_{18}$$[\ ]^{18}$
\(443\) Copy content Toggle raw display $\Q_{443}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(1481\) Copy content Toggle raw display $\Q_{1481}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(8314099\) Copy content Toggle raw display $\Q_{8314099}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$
Deg $12$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(221768083\) Copy content Toggle raw display $\Q_{221768083}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{221768083}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $19$$1$$19$$0$$C_{19}$$[\ ]^{19}$
\(2040445848379\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $22$$1$$22$$0$22T1$[\ ]^{22}$
\(22943703711693769\) Copy content Toggle raw display $\Q_{22943703711693769}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{22943703711693769}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{22943703711693769}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $21$$1$$21$$0$$C_{21}$$[\ ]^{21}$