Properties

Label 26.0.854...251.1
Degree $26$
Signature $[0, 13]$
Discriminant $-8.546\times 10^{52}$
Root discriminant \(108.60\)
Ramified prime $131$
Class number $7155$ (GRH)
Class group [3, 3, 795] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913)
 
gp: K = bnfinit(y^26 - y^25 + 3*y^24 - 11*y^23 + 44*y^22 + 444*y^21 + 172*y^20 - 1660*y^19 - 4713*y^18 - 12939*y^17 + 26193*y^16 + 35200*y^15 - 140905*y^14 + 424503*y^13 + 143672*y^12 - 1088095*y^11 + 163498*y^10 - 410278*y^9 + 3177833*y^8 - 3344770*y^7 + 4162585*y^6 - 2783945*y^5 + 3599581*y^4 - 4829444*y^3 + 1868225*y^2 + 472321*y + 4461913, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913)
 

\( x^{26} - x^{25} + 3 x^{24} - 11 x^{23} + 44 x^{22} + 444 x^{21} + 172 x^{20} - 1660 x^{19} + \cdots + 4461913 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-85463837848355618843993505004759251339989023133673251\) \(\medspace = -\,131^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(108.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $131^{25/26}\approx 108.6019902595675$
Ramified primes:   \(131\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-131}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(131\)
Dirichlet character group:    $\lbrace$$\chi_{131}(1,·)$, $\chi_{131}(130,·)$, $\chi_{131}(68,·)$, $\chi_{131}(69,·)$, $\chi_{131}(71,·)$, $\chi_{131}(79,·)$, $\chi_{131}(80,·)$, $\chi_{131}(18,·)$, $\chi_{131}(19,·)$, $\chi_{131}(84,·)$, $\chi_{131}(86,·)$, $\chi_{131}(24,·)$, $\chi_{131}(92,·)$, $\chi_{131}(32,·)$, $\chi_{131}(99,·)$, $\chi_{131}(39,·)$, $\chi_{131}(107,·)$, $\chi_{131}(45,·)$, $\chi_{131}(47,·)$, $\chi_{131}(112,·)$, $\chi_{131}(113,·)$, $\chi_{131}(51,·)$, $\chi_{131}(52,·)$, $\chi_{131}(60,·)$, $\chi_{131}(62,·)$, $\chi_{131}(63,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{89}a^{21}+\frac{40}{89}a^{20}-\frac{36}{89}a^{19}+\frac{31}{89}a^{18}+\frac{7}{89}a^{17}-\frac{18}{89}a^{16}+\frac{13}{89}a^{15}-\frac{5}{89}a^{14}+\frac{22}{89}a^{13}-\frac{24}{89}a^{12}+\frac{44}{89}a^{11}+\frac{35}{89}a^{10}-\frac{20}{89}a^{9}+\frac{30}{89}a^{8}+\frac{14}{89}a^{7}-\frac{41}{89}a^{6}-\frac{5}{89}a^{5}-\frac{21}{89}a^{4}-\frac{2}{89}a^{3}+\frac{10}{89}a^{2}+\frac{10}{89}a-\frac{32}{89}$, $\frac{1}{89}a^{22}-\frac{34}{89}a^{20}-\frac{42}{89}a^{19}+\frac{13}{89}a^{18}-\frac{31}{89}a^{17}+\frac{21}{89}a^{16}+\frac{9}{89}a^{15}+\frac{44}{89}a^{14}-\frac{14}{89}a^{13}+\frac{25}{89}a^{12}-\frac{34}{89}a^{11}+\frac{4}{89}a^{10}+\frac{29}{89}a^{9}-\frac{29}{89}a^{8}+\frac{22}{89}a^{7}+\frac{33}{89}a^{6}+\frac{1}{89}a^{5}+\frac{37}{89}a^{4}+\frac{1}{89}a^{3}-\frac{34}{89}a^{2}+\frac{13}{89}a+\frac{34}{89}$, $\frac{1}{287737}a^{23}+\frac{1093}{287737}a^{22}+\frac{529}{287737}a^{21}+\frac{2938}{287737}a^{20}+\frac{56036}{287737}a^{19}+\frac{30474}{287737}a^{18}+\frac{126808}{287737}a^{17}-\frac{71544}{287737}a^{16}-\frac{2825}{287737}a^{15}+\frac{79617}{287737}a^{14}+\frac{25411}{287737}a^{13}-\frac{88838}{287737}a^{12}-\frac{50389}{287737}a^{11}+\frac{138382}{287737}a^{10}+\frac{113947}{287737}a^{9}+\frac{33364}{287737}a^{8}-\frac{51699}{287737}a^{7}-\frac{71563}{287737}a^{6}+\frac{125496}{287737}a^{5}+\frac{109876}{287737}a^{4}+\frac{90624}{287737}a^{3}+\frac{432}{287737}a^{2}-\frac{110512}{287737}a-\frac{15386}{287737}$, $\frac{1}{287737}a^{24}-\frac{1143}{287737}a^{22}+\frac{215}{287737}a^{21}+\frac{19608}{287737}a^{20}+\frac{32311}{287737}a^{19}-\frac{120616}{287737}a^{18}-\frac{135405}{287737}a^{17}-\frac{50299}{287737}a^{16}+\frac{92759}{287737}a^{15}+\frac{23458}{287737}a^{14}+\frac{34496}{287737}a^{13}-\frac{18047}{287737}a^{12}-\frac{22246}{287737}a^{11}+\frac{92462}{287737}a^{10}-\frac{140430}{287737}a^{9}-\frac{43845}{287737}a^{8}+\frac{100419}{287737}a^{7}+\frac{27663}{287737}a^{6}-\frac{52411}{287737}a^{5}+\frac{98873}{287737}a^{4}-\frac{28043}{287737}a^{3}+\frac{2485}{287737}a^{2}-\frac{104407}{287737}a+\frac{118453}{287737}$, $\frac{1}{15\!\cdots\!19}a^{25}-\frac{83\!\cdots\!75}{15\!\cdots\!19}a^{24}-\frac{10\!\cdots\!16}{15\!\cdots\!19}a^{23}+\frac{11\!\cdots\!33}{29\!\cdots\!23}a^{22}-\frac{35\!\cdots\!27}{15\!\cdots\!19}a^{21}+\frac{32\!\cdots\!80}{15\!\cdots\!19}a^{20}+\frac{67\!\cdots\!42}{15\!\cdots\!19}a^{19}-\frac{32\!\cdots\!40}{15\!\cdots\!19}a^{18}-\frac{76\!\cdots\!90}{15\!\cdots\!19}a^{17}-\frac{28\!\cdots\!42}{15\!\cdots\!19}a^{16}-\frac{67\!\cdots\!56}{15\!\cdots\!19}a^{15}+\frac{40\!\cdots\!26}{15\!\cdots\!19}a^{14}-\frac{68\!\cdots\!13}{15\!\cdots\!19}a^{13}+\frac{14\!\cdots\!28}{15\!\cdots\!19}a^{12}-\frac{58\!\cdots\!00}{15\!\cdots\!19}a^{11}+\frac{22\!\cdots\!83}{15\!\cdots\!19}a^{10}-\frac{68\!\cdots\!58}{15\!\cdots\!19}a^{9}-\frac{62\!\cdots\!32}{15\!\cdots\!19}a^{8}+\frac{20\!\cdots\!32}{15\!\cdots\!19}a^{7}-\frac{61\!\cdots\!13}{15\!\cdots\!19}a^{6}-\frac{76\!\cdots\!28}{15\!\cdots\!19}a^{5}-\frac{27\!\cdots\!42}{15\!\cdots\!19}a^{4}+\frac{78\!\cdots\!75}{15\!\cdots\!19}a^{3}-\frac{19\!\cdots\!43}{15\!\cdots\!19}a^{2}+\frac{20\!\cdots\!38}{15\!\cdots\!19}a+\frac{44\!\cdots\!55}{15\!\cdots\!19}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{3}\times C_{795}$, which has order $7155$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{14\!\cdots\!96}{15\!\cdots\!19}a^{25}-\frac{37\!\cdots\!26}{15\!\cdots\!19}a^{24}-\frac{55\!\cdots\!53}{15\!\cdots\!19}a^{23}+\frac{74\!\cdots\!58}{29\!\cdots\!23}a^{22}+\frac{88\!\cdots\!24}{15\!\cdots\!19}a^{21}+\frac{10\!\cdots\!88}{15\!\cdots\!19}a^{20}-\frac{30\!\cdots\!30}{15\!\cdots\!19}a^{19}-\frac{32\!\cdots\!19}{15\!\cdots\!19}a^{18}-\frac{26\!\cdots\!77}{15\!\cdots\!19}a^{17}+\frac{12\!\cdots\!88}{15\!\cdots\!19}a^{16}+\frac{44\!\cdots\!94}{15\!\cdots\!19}a^{15}+\frac{79\!\cdots\!35}{15\!\cdots\!19}a^{14}-\frac{19\!\cdots\!89}{15\!\cdots\!19}a^{13}-\frac{32\!\cdots\!68}{15\!\cdots\!19}a^{12}+\frac{85\!\cdots\!46}{15\!\cdots\!19}a^{11}-\frac{17\!\cdots\!45}{15\!\cdots\!19}a^{10}-\frac{28\!\cdots\!75}{15\!\cdots\!19}a^{9}+\frac{80\!\cdots\!51}{15\!\cdots\!19}a^{8}+\frac{67\!\cdots\!80}{15\!\cdots\!19}a^{7}-\frac{74\!\cdots\!56}{15\!\cdots\!19}a^{6}-\frac{25\!\cdots\!65}{15\!\cdots\!19}a^{5}+\frac{76\!\cdots\!59}{15\!\cdots\!19}a^{4}+\frac{21\!\cdots\!62}{15\!\cdots\!19}a^{3}+\frac{75\!\cdots\!98}{15\!\cdots\!19}a^{2}-\frac{22\!\cdots\!28}{25\!\cdots\!79}a-\frac{19\!\cdots\!54}{15\!\cdots\!19}$, $\frac{72\!\cdots\!10}{15\!\cdots\!19}a^{25}-\frac{10\!\cdots\!56}{15\!\cdots\!19}a^{24}+\frac{15\!\cdots\!67}{15\!\cdots\!19}a^{23}-\frac{18\!\cdots\!45}{29\!\cdots\!23}a^{22}+\frac{30\!\cdots\!94}{15\!\cdots\!19}a^{21}+\frac{31\!\cdots\!44}{15\!\cdots\!19}a^{20}-\frac{48\!\cdots\!27}{15\!\cdots\!19}a^{19}-\frac{17\!\cdots\!66}{15\!\cdots\!19}a^{18}-\frac{40\!\cdots\!42}{15\!\cdots\!19}a^{17}-\frac{85\!\cdots\!88}{15\!\cdots\!19}a^{16}+\frac{27\!\cdots\!63}{15\!\cdots\!19}a^{15}+\frac{41\!\cdots\!97}{15\!\cdots\!19}a^{14}-\frac{87\!\cdots\!35}{15\!\cdots\!19}a^{13}+\frac{34\!\cdots\!18}{15\!\cdots\!19}a^{12}+\frac{14\!\cdots\!99}{15\!\cdots\!19}a^{11}-\frac{11\!\cdots\!98}{15\!\cdots\!19}a^{10}-\frac{18\!\cdots\!33}{15\!\cdots\!19}a^{9}-\frac{90\!\cdots\!35}{15\!\cdots\!19}a^{8}+\frac{21\!\cdots\!42}{15\!\cdots\!19}a^{7}-\frac{15\!\cdots\!79}{15\!\cdots\!19}a^{6}+\frac{44\!\cdots\!57}{15\!\cdots\!19}a^{5}-\frac{21\!\cdots\!51}{15\!\cdots\!19}a^{4}+\frac{42\!\cdots\!92}{15\!\cdots\!19}a^{3}-\frac{53\!\cdots\!58}{15\!\cdots\!19}a^{2}-\frac{29\!\cdots\!64}{15\!\cdots\!19}a-\frac{47\!\cdots\!77}{15\!\cdots\!19}$, $\frac{64\!\cdots\!54}{15\!\cdots\!19}a^{25}-\frac{81\!\cdots\!18}{15\!\cdots\!19}a^{24}+\frac{14\!\cdots\!06}{15\!\cdots\!19}a^{23}-\frac{67\!\cdots\!17}{29\!\cdots\!23}a^{22}+\frac{12\!\cdots\!84}{15\!\cdots\!19}a^{21}-\frac{85\!\cdots\!47}{15\!\cdots\!19}a^{20}-\frac{30\!\cdots\!86}{15\!\cdots\!19}a^{19}-\frac{58\!\cdots\!88}{15\!\cdots\!19}a^{18}+\frac{94\!\cdots\!46}{15\!\cdots\!19}a^{17}+\frac{17\!\cdots\!81}{15\!\cdots\!19}a^{16}+\frac{96\!\cdots\!63}{15\!\cdots\!19}a^{15}-\frac{23\!\cdots\!55}{15\!\cdots\!19}a^{14}-\frac{22\!\cdots\!89}{15\!\cdots\!19}a^{13}+\frac{14\!\cdots\!46}{15\!\cdots\!19}a^{12}-\frac{40\!\cdots\!43}{15\!\cdots\!19}a^{11}+\frac{10\!\cdots\!13}{15\!\cdots\!19}a^{10}+\frac{91\!\cdots\!57}{15\!\cdots\!19}a^{9}-\frac{10\!\cdots\!80}{15\!\cdots\!19}a^{8}+\frac{14\!\cdots\!35}{15\!\cdots\!19}a^{7}-\frac{28\!\cdots\!72}{15\!\cdots\!19}a^{6}+\frac{25\!\cdots\!51}{15\!\cdots\!19}a^{5}-\frac{29\!\cdots\!90}{15\!\cdots\!19}a^{4}+\frac{19\!\cdots\!87}{15\!\cdots\!19}a^{3}-\frac{23\!\cdots\!27}{15\!\cdots\!19}a^{2}+\frac{24\!\cdots\!45}{15\!\cdots\!19}a-\frac{20\!\cdots\!41}{15\!\cdots\!19}$, $\frac{96\!\cdots\!55}{15\!\cdots\!19}a^{25}-\frac{83\!\cdots\!15}{15\!\cdots\!19}a^{24}+\frac{13\!\cdots\!66}{15\!\cdots\!19}a^{23}-\frac{56\!\cdots\!75}{29\!\cdots\!23}a^{22}+\frac{73\!\cdots\!30}{15\!\cdots\!19}a^{21}+\frac{38\!\cdots\!05}{15\!\cdots\!19}a^{20}+\frac{54\!\cdots\!70}{15\!\cdots\!19}a^{19}+\frac{36\!\cdots\!52}{15\!\cdots\!19}a^{18}+\frac{53\!\cdots\!54}{15\!\cdots\!19}a^{17}-\frac{17\!\cdots\!00}{15\!\cdots\!19}a^{16}-\frac{36\!\cdots\!24}{15\!\cdots\!19}a^{15}-\frac{19\!\cdots\!06}{15\!\cdots\!19}a^{14}-\frac{20\!\cdots\!05}{15\!\cdots\!19}a^{13}+\frac{77\!\cdots\!19}{15\!\cdots\!19}a^{12}-\frac{78\!\cdots\!07}{15\!\cdots\!19}a^{11}+\frac{17\!\cdots\!40}{15\!\cdots\!19}a^{10}+\frac{77\!\cdots\!88}{15\!\cdots\!19}a^{9}-\frac{32\!\cdots\!72}{15\!\cdots\!19}a^{8}-\frac{98\!\cdots\!91}{15\!\cdots\!19}a^{7}-\frac{86\!\cdots\!71}{15\!\cdots\!19}a^{6}+\frac{18\!\cdots\!05}{15\!\cdots\!19}a^{5}-\frac{12\!\cdots\!27}{15\!\cdots\!19}a^{4}+\frac{16\!\cdots\!25}{15\!\cdots\!19}a^{3}+\frac{96\!\cdots\!00}{15\!\cdots\!19}a^{2}+\frac{25\!\cdots\!13}{15\!\cdots\!19}a+\frac{78\!\cdots\!55}{15\!\cdots\!19}$, $\frac{32\!\cdots\!51}{15\!\cdots\!19}a^{25}-\frac{65\!\cdots\!35}{15\!\cdots\!19}a^{24}+\frac{13\!\cdots\!75}{15\!\cdots\!19}a^{23}-\frac{83\!\cdots\!96}{29\!\cdots\!23}a^{22}+\frac{17\!\cdots\!61}{15\!\cdots\!19}a^{21}+\frac{12\!\cdots\!17}{15\!\cdots\!19}a^{20}-\frac{92\!\cdots\!51}{15\!\cdots\!19}a^{19}-\frac{55\!\cdots\!31}{15\!\cdots\!19}a^{18}-\frac{89\!\cdots\!70}{15\!\cdots\!19}a^{17}-\frac{28\!\cdots\!83}{15\!\cdots\!19}a^{16}+\frac{12\!\cdots\!43}{15\!\cdots\!19}a^{15}+\frac{14\!\cdots\!41}{15\!\cdots\!19}a^{14}-\frac{56\!\cdots\!18}{15\!\cdots\!19}a^{13}+\frac{19\!\cdots\!63}{15\!\cdots\!19}a^{12}-\frac{10\!\cdots\!89}{15\!\cdots\!19}a^{11}-\frac{40\!\cdots\!54}{15\!\cdots\!19}a^{10}+\frac{54\!\cdots\!92}{15\!\cdots\!19}a^{9}-\frac{35\!\cdots\!99}{15\!\cdots\!19}a^{8}+\frac{95\!\cdots\!38}{15\!\cdots\!19}a^{7}-\frac{18\!\cdots\!62}{15\!\cdots\!19}a^{6}+\frac{24\!\cdots\!69}{15\!\cdots\!19}a^{5}-\frac{18\!\cdots\!13}{15\!\cdots\!19}a^{4}+\frac{97\!\cdots\!47}{15\!\cdots\!19}a^{3}-\frac{98\!\cdots\!27}{15\!\cdots\!19}a^{2}+\frac{12\!\cdots\!39}{25\!\cdots\!79}a+\frac{36\!\cdots\!93}{15\!\cdots\!19}$, $\frac{20\!\cdots\!95}{15\!\cdots\!19}a^{25}-\frac{78\!\cdots\!89}{15\!\cdots\!19}a^{24}+\frac{10\!\cdots\!77}{15\!\cdots\!19}a^{23}-\frac{70\!\cdots\!05}{29\!\cdots\!23}a^{22}+\frac{14\!\cdots\!83}{15\!\cdots\!19}a^{21}+\frac{67\!\cdots\!61}{15\!\cdots\!19}a^{20}-\frac{23\!\cdots\!84}{15\!\cdots\!19}a^{19}-\frac{49\!\cdots\!15}{15\!\cdots\!19}a^{18}+\frac{14\!\cdots\!01}{15\!\cdots\!19}a^{17}-\frac{80\!\cdots\!04}{15\!\cdots\!19}a^{16}+\frac{12\!\cdots\!77}{15\!\cdots\!19}a^{15}-\frac{55\!\cdots\!57}{15\!\cdots\!19}a^{14}-\frac{49\!\cdots\!13}{15\!\cdots\!19}a^{13}+\frac{18\!\cdots\!69}{15\!\cdots\!19}a^{12}-\frac{19\!\cdots\!17}{15\!\cdots\!19}a^{11}-\frac{43\!\cdots\!58}{15\!\cdots\!19}a^{10}+\frac{79\!\cdots\!94}{15\!\cdots\!19}a^{9}-\frac{24\!\cdots\!35}{15\!\cdots\!19}a^{8}+\frac{15\!\cdots\!94}{15\!\cdots\!19}a^{7}-\frac{16\!\cdots\!35}{15\!\cdots\!19}a^{6}+\frac{28\!\cdots\!59}{15\!\cdots\!19}a^{5}-\frac{21\!\cdots\!77}{15\!\cdots\!19}a^{4}+\frac{16\!\cdots\!82}{15\!\cdots\!19}a^{3}-\frac{32\!\cdots\!19}{15\!\cdots\!19}a^{2}+\frac{20\!\cdots\!63}{15\!\cdots\!19}a-\frac{17\!\cdots\!53}{15\!\cdots\!19}$, $\frac{25\!\cdots\!54}{15\!\cdots\!19}a^{25}+\frac{65\!\cdots\!67}{15\!\cdots\!19}a^{24}-\frac{12\!\cdots\!47}{15\!\cdots\!19}a^{23}+\frac{62\!\cdots\!54}{29\!\cdots\!23}a^{22}-\frac{79\!\cdots\!02}{15\!\cdots\!19}a^{21}+\frac{48\!\cdots\!34}{15\!\cdots\!19}a^{20}+\frac{27\!\cdots\!50}{15\!\cdots\!19}a^{19}-\frac{17\!\cdots\!11}{15\!\cdots\!19}a^{18}-\frac{86\!\cdots\!57}{15\!\cdots\!19}a^{17}-\frac{18\!\cdots\!48}{15\!\cdots\!19}a^{16}-\frac{68\!\cdots\!15}{15\!\cdots\!19}a^{15}+\frac{21\!\cdots\!70}{15\!\cdots\!19}a^{14}-\frac{11\!\cdots\!31}{15\!\cdots\!19}a^{13}-\frac{98\!\cdots\!12}{15\!\cdots\!19}a^{12}+\frac{44\!\cdots\!31}{15\!\cdots\!19}a^{11}-\frac{34\!\cdots\!85}{15\!\cdots\!19}a^{10}-\frac{54\!\cdots\!44}{15\!\cdots\!19}a^{9}+\frac{16\!\cdots\!73}{15\!\cdots\!19}a^{8}-\frac{19\!\cdots\!90}{15\!\cdots\!19}a^{7}+\frac{23\!\cdots\!86}{15\!\cdots\!19}a^{6}-\frac{24\!\cdots\!69}{15\!\cdots\!19}a^{5}+\frac{27\!\cdots\!00}{15\!\cdots\!19}a^{4}-\frac{19\!\cdots\!73}{15\!\cdots\!19}a^{3}+\frac{13\!\cdots\!48}{15\!\cdots\!19}a^{2}-\frac{13\!\cdots\!30}{15\!\cdots\!19}a+\frac{13\!\cdots\!08}{15\!\cdots\!19}$, $\frac{41\!\cdots\!01}{15\!\cdots\!19}a^{25}+\frac{52\!\cdots\!46}{15\!\cdots\!19}a^{24}-\frac{10\!\cdots\!22}{15\!\cdots\!19}a^{23}-\frac{50\!\cdots\!42}{29\!\cdots\!23}a^{22}+\frac{64\!\cdots\!90}{15\!\cdots\!19}a^{21}+\frac{22\!\cdots\!78}{15\!\cdots\!19}a^{20}+\frac{48\!\cdots\!47}{15\!\cdots\!19}a^{19}-\frac{76\!\cdots\!68}{15\!\cdots\!19}a^{18}-\frac{42\!\cdots\!25}{15\!\cdots\!19}a^{17}-\frac{10\!\cdots\!29}{15\!\cdots\!19}a^{16}+\frac{12\!\cdots\!20}{15\!\cdots\!19}a^{15}+\frac{52\!\cdots\!23}{15\!\cdots\!19}a^{14}-\frac{79\!\cdots\!03}{15\!\cdots\!19}a^{13}+\frac{33\!\cdots\!68}{15\!\cdots\!19}a^{12}+\frac{48\!\cdots\!57}{15\!\cdots\!19}a^{11}-\frac{40\!\cdots\!29}{15\!\cdots\!19}a^{10}-\frac{14\!\cdots\!45}{15\!\cdots\!19}a^{9}-\frac{14\!\cdots\!10}{15\!\cdots\!19}a^{8}+\frac{10\!\cdots\!76}{15\!\cdots\!19}a^{7}+\frac{21\!\cdots\!26}{15\!\cdots\!19}a^{6}-\frac{27\!\cdots\!43}{15\!\cdots\!19}a^{5}+\frac{20\!\cdots\!44}{15\!\cdots\!19}a^{4}-\frac{66\!\cdots\!93}{15\!\cdots\!19}a^{3}-\frac{42\!\cdots\!27}{15\!\cdots\!19}a^{2}-\frac{59\!\cdots\!64}{15\!\cdots\!19}a-\frac{66\!\cdots\!49}{15\!\cdots\!19}$, $\frac{28\!\cdots\!92}{15\!\cdots\!19}a^{25}-\frac{34\!\cdots\!29}{15\!\cdots\!19}a^{24}+\frac{68\!\cdots\!75}{15\!\cdots\!19}a^{23}-\frac{42\!\cdots\!88}{29\!\cdots\!23}a^{22}+\frac{14\!\cdots\!41}{15\!\cdots\!19}a^{21}+\frac{13\!\cdots\!41}{15\!\cdots\!19}a^{20}+\frac{10\!\cdots\!91}{15\!\cdots\!19}a^{19}-\frac{57\!\cdots\!06}{15\!\cdots\!19}a^{18}-\frac{85\!\cdots\!71}{15\!\cdots\!19}a^{17}-\frac{17\!\cdots\!23}{15\!\cdots\!19}a^{16}+\frac{97\!\cdots\!93}{15\!\cdots\!19}a^{15}+\frac{50\!\cdots\!82}{15\!\cdots\!19}a^{14}-\frac{75\!\cdots\!61}{15\!\cdots\!19}a^{13}+\frac{95\!\cdots\!44}{15\!\cdots\!19}a^{12}+\frac{96\!\cdots\!69}{15\!\cdots\!19}a^{11}-\frac{40\!\cdots\!28}{15\!\cdots\!19}a^{10}+\frac{22\!\cdots\!34}{15\!\cdots\!19}a^{9}+\frac{95\!\cdots\!67}{15\!\cdots\!19}a^{8}+\frac{13\!\cdots\!13}{15\!\cdots\!19}a^{7}-\frac{22\!\cdots\!60}{15\!\cdots\!19}a^{6}-\frac{16\!\cdots\!45}{15\!\cdots\!19}a^{5}-\frac{23\!\cdots\!66}{15\!\cdots\!19}a^{4}+\frac{35\!\cdots\!20}{15\!\cdots\!19}a^{3}+\frac{11\!\cdots\!32}{15\!\cdots\!19}a^{2}-\frac{47\!\cdots\!54}{15\!\cdots\!19}a-\frac{21\!\cdots\!03}{15\!\cdots\!19}$, $\frac{13\!\cdots\!93}{15\!\cdots\!19}a^{25}-\frac{27\!\cdots\!61}{15\!\cdots\!19}a^{24}+\frac{62\!\cdots\!21}{15\!\cdots\!19}a^{23}-\frac{36\!\cdots\!19}{29\!\cdots\!23}a^{22}+\frac{75\!\cdots\!45}{15\!\cdots\!19}a^{21}+\frac{52\!\cdots\!12}{15\!\cdots\!19}a^{20}-\frac{35\!\cdots\!69}{15\!\cdots\!19}a^{19}-\frac{20\!\cdots\!06}{15\!\cdots\!19}a^{18}-\frac{36\!\cdots\!61}{15\!\cdots\!19}a^{17}-\frac{12\!\cdots\!09}{15\!\cdots\!19}a^{16}+\frac{48\!\cdots\!41}{15\!\cdots\!19}a^{15}-\frac{24\!\cdots\!48}{15\!\cdots\!19}a^{14}-\frac{21\!\cdots\!95}{15\!\cdots\!19}a^{13}+\frac{79\!\cdots\!06}{15\!\cdots\!19}a^{12}-\frac{55\!\cdots\!11}{15\!\cdots\!19}a^{11}-\frac{12\!\cdots\!42}{15\!\cdots\!19}a^{10}+\frac{21\!\cdots\!67}{15\!\cdots\!19}a^{9}-\frac{22\!\cdots\!66}{15\!\cdots\!19}a^{8}+\frac{57\!\cdots\!04}{15\!\cdots\!19}a^{7}-\frac{86\!\cdots\!68}{15\!\cdots\!19}a^{6}+\frac{95\!\cdots\!61}{15\!\cdots\!19}a^{5}-\frac{82\!\cdots\!37}{15\!\cdots\!19}a^{4}+\frac{65\!\cdots\!14}{15\!\cdots\!19}a^{3}-\frac{46\!\cdots\!43}{15\!\cdots\!19}a^{2}+\frac{23\!\cdots\!64}{15\!\cdots\!19}a+\frac{74\!\cdots\!27}{15\!\cdots\!19}$, $\frac{20\!\cdots\!09}{15\!\cdots\!19}a^{25}-\frac{15\!\cdots\!12}{15\!\cdots\!19}a^{24}+\frac{20\!\cdots\!15}{15\!\cdots\!19}a^{23}-\frac{10\!\cdots\!43}{29\!\cdots\!23}a^{22}+\frac{22\!\cdots\!59}{15\!\cdots\!19}a^{21}+\frac{34\!\cdots\!68}{15\!\cdots\!19}a^{20}-\frac{58\!\cdots\!62}{15\!\cdots\!19}a^{19}-\frac{50\!\cdots\!84}{15\!\cdots\!19}a^{18}+\frac{16\!\cdots\!19}{15\!\cdots\!19}a^{17}+\frac{31\!\cdots\!82}{15\!\cdots\!19}a^{16}+\frac{20\!\cdots\!10}{15\!\cdots\!19}a^{15}-\frac{31\!\cdots\!21}{15\!\cdots\!19}a^{14}-\frac{79\!\cdots\!04}{15\!\cdots\!19}a^{13}+\frac{32\!\cdots\!33}{15\!\cdots\!19}a^{12}-\frac{54\!\cdots\!17}{15\!\cdots\!19}a^{11}-\frac{62\!\cdots\!23}{15\!\cdots\!19}a^{10}+\frac{21\!\cdots\!86}{15\!\cdots\!19}a^{9}-\frac{61\!\cdots\!40}{15\!\cdots\!19}a^{8}-\frac{76\!\cdots\!95}{15\!\cdots\!19}a^{7}-\frac{32\!\cdots\!14}{15\!\cdots\!19}a^{6}+\frac{64\!\cdots\!75}{15\!\cdots\!19}a^{5}-\frac{48\!\cdots\!93}{15\!\cdots\!19}a^{4}-\frac{11\!\cdots\!81}{15\!\cdots\!19}a^{3}+\frac{73\!\cdots\!79}{15\!\cdots\!19}a^{2}+\frac{65\!\cdots\!49}{15\!\cdots\!19}a-\frac{67\!\cdots\!27}{15\!\cdots\!19}$, $\frac{15\!\cdots\!19}{15\!\cdots\!19}a^{25}-\frac{29\!\cdots\!19}{15\!\cdots\!19}a^{24}+\frac{62\!\cdots\!66}{15\!\cdots\!19}a^{23}-\frac{39\!\cdots\!13}{29\!\cdots\!23}a^{22}+\frac{83\!\cdots\!82}{15\!\cdots\!19}a^{21}+\frac{63\!\cdots\!66}{15\!\cdots\!19}a^{20}-\frac{34\!\cdots\!73}{15\!\cdots\!19}a^{19}-\frac{27\!\cdots\!20}{15\!\cdots\!19}a^{18}-\frac{47\!\cdots\!02}{15\!\cdots\!19}a^{17}-\frac{14\!\cdots\!78}{15\!\cdots\!19}a^{16}+\frac{57\!\cdots\!43}{15\!\cdots\!19}a^{15}+\frac{14\!\cdots\!39}{15\!\cdots\!19}a^{14}-\frac{27\!\cdots\!47}{15\!\cdots\!19}a^{13}+\frac{88\!\cdots\!48}{15\!\cdots\!19}a^{12}-\frac{39\!\cdots\!04}{15\!\cdots\!19}a^{11}-\frac{19\!\cdots\!52}{15\!\cdots\!19}a^{10}+\frac{22\!\cdots\!23}{15\!\cdots\!19}a^{9}-\frac{13\!\cdots\!75}{15\!\cdots\!19}a^{8}+\frac{51\!\cdots\!46}{15\!\cdots\!19}a^{7}-\frac{87\!\cdots\!72}{15\!\cdots\!19}a^{6}+\frac{99\!\cdots\!17}{15\!\cdots\!19}a^{5}-\frac{80\!\cdots\!61}{15\!\cdots\!19}a^{4}+\frac{59\!\cdots\!54}{15\!\cdots\!19}a^{3}-\frac{46\!\cdots\!49}{15\!\cdots\!19}a^{2}+\frac{21\!\cdots\!44}{15\!\cdots\!19}a+\frac{58\!\cdots\!33}{15\!\cdots\!19}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1197545162478.713 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 1197545162478.713 \cdot 7155}{2\cdot\sqrt{85463837848355618843993505004759251339989023133673251}}\cr\approx \mathstrut & 0.348592979309905 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 + 3*x^24 - 11*x^23 + 44*x^22 + 444*x^21 + 172*x^20 - 1660*x^19 - 4713*x^18 - 12939*x^17 + 26193*x^16 + 35200*x^15 - 140905*x^14 + 424503*x^13 + 143672*x^12 - 1088095*x^11 + 163498*x^10 - 410278*x^9 + 3177833*x^8 - 3344770*x^7 + 4162585*x^6 - 2783945*x^5 + 3599581*x^4 - 4829444*x^3 + 1868225*x^2 + 472321*x + 4461913);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$

Intermediate fields

\(\Q(\sqrt{-131}) \), 13.13.25542038069936263923006961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $26$ ${\href{/padicField/3.13.0.1}{13} }^{2}$ ${\href{/padicField/5.13.0.1}{13} }^{2}$ ${\href{/padicField/7.13.0.1}{13} }^{2}$ ${\href{/padicField/11.13.0.1}{13} }^{2}$ ${\href{/padicField/13.13.0.1}{13} }^{2}$ $26$ $26$ $26$ $26$ $26$ $26$ ${\href{/padicField/41.13.0.1}{13} }^{2}$ ${\href{/padicField/43.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/53.1.0.1}{1} }^{26}$ ${\href{/padicField/59.13.0.1}{13} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(131\) Copy content Toggle raw display Deg $26$$26$$1$$25$