Properties

Label 26.0.499...143.1
Degree $26$
Signature $[0, 13]$
Discriminant $-4.990\times 10^{48}$
Root discriminant \(74.65\)
Ramified primes see page
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $S_{26}$ (as 26T96)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 3*x + 3)
 
gp: K = bnfinit(y^26 - 3*y + 3, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 3*x + 3);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 3*x + 3)
 

\( x^{26} - 3x + 3 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4990246961229047120192449009721354684714164966143\) \(\medspace = -\,3^{25}\cdot 37\cdot 193\cdot 397\cdot 3673\cdot 565614067938252407382930781\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(74.65\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{25/26}37^{1/2}193^{1/2}397^{1/2}3673^{1/2}565614067938252407382930781^{1/2}\approx 6.979362773204392e+18$
Ramified primes:   \(3\), \(37\), \(193\), \(397\), \(3673\), \(565614067938252407382930781\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-17668\!\cdots\!20703}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $a^{9}+a-1$, $a^{25}+a^{24}+a^{17}+a^{16}+a^{14}+a^{13}-a^{12}-a^{9}+a^{6}+a^{5}+2a^{3}+a^{2}-2a-2$, $a^{25}+2a^{24}+a^{23}+a^{22}+a^{21}-a^{20}+a^{19}-2a^{18}+a^{17}-a^{16}-a^{15}-3a^{13}+a^{12}-3a^{11}-2a^{9}-2a^{8}-a^{7}-2a^{6}-2a^{4}-a^{3}-3a^{2}-7$, $2a^{24}+2a^{23}-a^{22}-2a^{21}-3a^{20}-2a^{19}+a^{18}+2a^{17}+2a^{16}-2a^{15}-3a^{14}+a^{13}+3a^{12}+4a^{11}-a^{10}-4a^{9}-3a^{8}-3a^{7}+3a^{6}+4a^{5}+3a^{4}-a^{3}-7a^{2}+a+5$, $a^{24}+2a^{21}-a^{20}+a^{19}+2a^{18}-3a^{17}+3a^{16}-a^{15}-3a^{14}+5a^{13}-5a^{12}+a^{11}+3a^{10}-7a^{9}+5a^{8}-2a^{7}-4a^{6}+6a^{5}-4a^{4}+a^{3}+4a^{2}-3a+1$, $a^{25}-2a^{24}+a^{21}+a^{20}-2a^{19}+2a^{18}-2a^{17}+a^{16}-4a^{15}+a^{14}+a^{13}+2a^{11}-a^{10}+7a^{9}-3a^{8}+2a^{7}-4a^{6}+2a^{5}-a^{4}-6a^{3}+3a^{2}-4a+5$, $a^{25}+4a^{24}+4a^{23}+a^{22}-3a^{21}-4a^{20}+5a^{18}+5a^{17}-4a^{15}-4a^{14}+6a^{12}+7a^{11}-7a^{9}-6a^{8}+a^{7}+7a^{6}+7a^{5}+a^{4}-8a^{3}-10a^{2}+a+8$, $a^{25}-a^{24}+2a^{23}+2a^{22}-a^{21}+a^{20}+2a^{19}-2a^{18}-a^{17}+a^{16}-2a^{15}-a^{14}+a^{13}-2a^{12}-a^{11}+a^{10}-3a^{9}+3a^{7}-2a^{6}+6a^{4}-3a^{3}-2a^{2}+7a-5$, $20a^{25}-9a^{24}-27a^{23}-5a^{22}+28a^{21}+22a^{20}-17a^{19}-33a^{18}+38a^{16}+23a^{15}-28a^{14}-40a^{13}+8a^{12}+50a^{11}+22a^{10}-43a^{9}-48a^{8}+21a^{7}+65a^{6}+16a^{5}-63a^{4}-54a^{3}+41a^{2}+82a-58$, $7a^{25}+6a^{24}+5a^{23}+2a^{22}-a^{21}-3a^{20}-5a^{19}-5a^{18}-3a^{17}+4a^{15}+6a^{14}+8a^{13}+7a^{12}+2a^{11}-a^{10}-7a^{9}-8a^{8}-9a^{7}-5a^{6}+3a^{4}+7a^{3}+9a^{2}+5a-17$, $4a^{25}+5a^{24}+24a^{23}+31a^{22}+2a^{21}-51a^{20}-84a^{19}-62a^{18}+5a^{17}+66a^{16}+75a^{15}+33a^{14}-13a^{13}-18a^{12}+15a^{11}+36a^{10}+3a^{9}-70a^{8}-116a^{7}-78a^{6}+28a^{5}+120a^{4}+122a^{3}+37a^{2}-52a-74$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 62788452030563.16 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 62788452030563.16 \cdot 2}{2\cdot\sqrt{4990246961229047120192449009721354684714164966143}}\cr\approx \mathstrut & 0.668585641439098 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 3*x + 3)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 3*x + 3, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 3*x + 3);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 3*x + 3);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{26}$ (as 26T96):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 403291461126605635584000000
The 2436 conjugacy class representatives for $S_{26}$
Character table for $S_{26}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.9.0.1}{9} }{,}\,{\href{/padicField/2.3.0.1}{3} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ R ${\href{/padicField/5.12.0.1}{12} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ $24{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ $26$ $21{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ $15{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.13.0.1}{13} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ $21{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ $17{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ R $15{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ $15{,}\,{\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $26$$26$$1$$25$
\(37\) Copy content Toggle raw display $\Q_{37}$$x + 35$$1$$1$$0$Trivial$[\ ]$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.21.0.1$x^{21} - x + 15$$1$$21$$0$$C_{21}$$[\ ]^{21}$
\(193\) Copy content Toggle raw display $\Q_{193}$$x + 188$$1$$1$$0$Trivial$[\ ]$
$\Q_{193}$$x + 188$$1$$1$$0$Trivial$[\ ]$
193.2.1.2$x^{2} + 965$$2$$1$$1$$C_2$$[\ ]_{2}$
193.22.0.1$x^{22} + x^{2} - x + 77$$1$$22$$0$22T1$[\ ]^{22}$
\(397\) Copy content Toggle raw display $\Q_{397}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{397}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $22$$1$$22$$0$22T1$[\ ]^{22}$
\(3673\) Copy content Toggle raw display $\Q_{3673}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(565\!\cdots\!781\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $17$$1$$17$$0$$C_{17}$$[\ ]^{17}$