Properties

Label 25.1.624...192.1
Degree $25$
Signature $[1, 12]$
Discriminant $6.250\times 10^{48}$
Root discriminant \(89.50\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{25}$ (as 25T211)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 - 2*x - 4)
 
gp: K = bnfinit(y^25 - 2*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 - 2*x - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 2*x - 4)
 

\( x^{25} - 2x - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(6249999988811813392427491791373439564250917896192\) \(\medspace = 2^{46}\cdot 13751\cdot 431377\cdot 76457289497\cdot 195834881900887\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(89.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(13751\), \(431377\), \(76457289497\), \(195834881900887\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{88817\!\cdots\!82553}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{2}a^{24}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $6a^{24}-3a^{23}-a^{22}+6a^{21}-9a^{20}+3a^{19}+3a^{18}-6a^{17}+8a^{16}-a^{15}-9a^{14}+9a^{13}-8a^{12}+a^{11}+11a^{10}-11a^{9}+3a^{8}+3a^{7}-14a^{6}+14a^{5}-10a^{3}+14a^{2}-15a-15$, $a^{24}-a^{22}+a^{21}-a^{19}-a^{18}-a^{17}-a^{16}-2a^{15}-a^{14}-2a^{13}-a^{12}-a^{10}-2a^{9}+a^{8}+4a^{7}+a^{6}+4a^{4}+6a^{3}+a^{2}+2a+5$, $2a^{24}-a^{23}-4a^{22}-8a^{21}-8a^{20}-a^{19}+3a^{18}+8a^{17}+5a^{16}+6a^{15}+3a^{14}+3a^{13}+3a^{12}-5a^{10}-18a^{9}-18a^{8}-12a^{7}+6a^{6}+14a^{5}+16a^{4}+14a^{3}+9a^{2}+10a+1$, $3a^{24}-4a^{23}+a^{22}+3a^{21}-6a^{20}+5a^{19}+2a^{18}-7a^{17}+8a^{16}-a^{15}-8a^{14}+10a^{13}-6a^{12}-6a^{11}+11a^{10}-9a^{9}+10a^{7}-8a^{6}+5a^{5}+5a^{4}-6a^{3}+5a^{2}-4a-9$, $a^{24}+a^{23}+a^{21}+a^{19}+a^{18}+2a^{17}+2a^{16}+4a^{15}+2a^{14}+6a^{13}+2a^{12}+7a^{11}+3a^{10}+7a^{9}+5a^{8}+8a^{7}+7a^{6}+10a^{5}+7a^{4}+11a^{3}+6a^{2}+10a+3$, $a^{24}+4a^{23}-10a^{22}+13a^{21}-20a^{20}+13a^{19}-15a^{18}+19a^{17}+2a^{16}+2a^{14}-23a^{13}+18a^{12}-21a^{11}+23a^{10}-17a^{9}+19a^{8}+6a^{7}-a^{6}+2a^{5}-42a^{4}+19a^{3}-20a^{2}+48a-13$, $2a^{22}+4a^{21}+4a^{20}+4a^{19}-6a^{18}-8a^{17}-5a^{16}+2a^{15}+2a^{14}+6a^{13}+9a^{12}+5a^{11}-3a^{10}-18a^{9}-8a^{8}-a^{7}+5a^{6}+9a^{5}+14a^{4}+14a^{3}-5a^{2}-23a-25$, $5a^{23}+3a^{22}-3a^{21}+4a^{20}-5a^{19}-a^{18}-11a^{17}+7a^{16}-13a^{15}+9a^{14}-5a^{13}+17a^{12}-8a^{11}+20a^{10}-9a^{9}+13a^{8}-18a^{7}+5a^{6}-21a^{5}+2a^{4}-21a^{3}+11a^{2}+13$, $7a^{24}+6a^{23}+7a^{22}+8a^{21}+8a^{20}+12a^{19}+10a^{18}+9a^{17}+9a^{16}+16a^{15}+15a^{14}+14a^{13}+11a^{12}+19a^{11}+19a^{10}+20a^{9}+20a^{8}+24a^{7}+18a^{6}+27a^{5}+36a^{4}+30a^{3}+20a^{2}+36a+33$, $6a^{23}-3a^{22}-6a^{21}+6a^{20}+5a^{19}-8a^{18}+a^{17}+11a^{16}-a^{15}-8a^{14}+10a^{13}+9a^{12}-11a^{11}-a^{10}+15a^{9}-2a^{8}-16a^{7}+10a^{6}+10a^{5}-20a^{4}-9a^{3}+18a^{2}-5a-27$, $3a^{24}-5a^{23}-5a^{22}-2a^{21}-8a^{20}-13a^{19}-12a^{18}-14a^{17}-13a^{16}-14a^{15}-16a^{14}-13a^{13}-2a^{12}-5a^{11}-4a^{10}+5a^{9}+17a^{8}+16a^{7}+17a^{6}+19a^{5}+34a^{4}+31a^{3}+12a^{2}+10a+21$, $3a^{24}+4a^{23}-9a^{22}+7a^{21}-2a^{20}-6a^{19}+12a^{18}-9a^{17}-2a^{16}+14a^{15}-12a^{14}+4a^{13}+8a^{12}-12a^{11}+14a^{10}-2a^{9}-13a^{8}+20a^{7}-9a^{6}-7a^{5}+14a^{4}-19a^{3}+9a^{2}+6a-35$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1436614179210074.2 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 1436614179210074.2 \cdot 1}{2\cdot\sqrt{6249999988811813392427491791373439564250917896192}}\cr\approx \mathstrut & 2.17549735980538 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 - 2*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 - 2*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 - 2*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 - 2*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{25}$ (as 25T211):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 15511210043330985984000000
The 1958 conjugacy class representatives for $S_{25}$
Character table for $S_{25}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $19{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.8.0.1}{8} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ $16{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ $15{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $21{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.13.0.1}{13} }{,}\,{\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ $18{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ $15{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.11.0.1}{11} }{,}\,{\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ $25$ $17{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ $25$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $24$$24$$1$$46$
\(13751\) Copy content Toggle raw display $\Q_{13751}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{13751}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $17$$1$$17$$0$$C_{17}$$[\ ]^{17}$
\(431377\) Copy content Toggle raw display $\Q_{431377}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(76457289497\) Copy content Toggle raw display $\Q_{76457289497}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{76457289497}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(195834881900887\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$