Properties

Label 25.1.569...625.1
Degree $25$
Signature $[1, 12]$
Discriminant $5.691\times 10^{51}$
Root discriminant \(117.55\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{25}$ (as 25T211)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^25 + 5*x - 5)
 
gp: K = bnfinit(y^25 + 5*y - 5, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^25 + 5*x - 5);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 + 5*x - 5)
 

\( x^{25} + 5x - 5 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $25$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5691440156356331339844223309247762262821197509765625\) \(\medspace = 5^{25}\cdot 127\cdot 390538849\cdot 963885163\cdot 399465067602449\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(117.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(5\), \(127\), \(390538849\), \(963885163\), \(399465067602449\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{95486\!\cdots\!84505}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $a^{24}-a^{23}+3a^{22}-3a^{21}+4a^{20}-4a^{19}+2a^{18}-2a^{17}-2a^{16}+2a^{15}-6a^{14}+6a^{13}-8a^{12}+8a^{11}-6a^{10}+4a^{9}+a^{8}-5a^{7}+11a^{6}-16a^{5}+16a^{4}-17a^{3}+12a^{2}-10a+4$, $a^{23}+a^{22}+4a^{20}-2a^{19}+5a^{18}+3a^{16}+3a^{15}+5a^{13}+6a^{11}-4a^{10}+9a^{9}-4a^{8}+4a^{7}+4a^{6}-9a^{5}+14a^{4}-11a^{3}+8a^{2}-8a+6$, $a^{24}-4a^{23}+6a^{22}-3a^{21}-4a^{20}+9a^{19}-3a^{18}-2a^{17}+6a^{16}-7a^{15}+2a^{14}+5a^{13}-9a^{12}+5a^{11}-3a^{10}-5a^{9}+17a^{8}-13a^{7}-4a^{6}+17a^{5}-26a^{4}+11a^{3}+24a^{2}-44a+26$, $74a^{24}+78a^{23}+66a^{22}+66a^{21}+50a^{20}+43a^{19}+26a^{18}+16a^{17}-2a^{16}-16a^{15}-26a^{14}-46a^{13}-49a^{12}-67a^{11}-61a^{10}-86a^{9}-59a^{8}-90a^{7}-54a^{6}-81a^{5}-31a^{4}-73a^{3}-47a+394$, $12a^{24}+22a^{23}+24a^{22}+20a^{21}+11a^{20}-5a^{19}-15a^{18}-15a^{17}-3a^{16}+10a^{15}+24a^{14}+35a^{13}+25a^{12}+5a^{11}-15a^{10}-25a^{9}-29a^{8}-16a^{7}+16a^{6}+42a^{5}+42a^{4}+29a^{3}+13a^{2}-28a+6$, $14a^{24}+37a^{23}+11a^{22}-35a^{21}-39a^{20}+11a^{19}+53a^{18}+27a^{17}-41a^{16}-62a^{15}+a^{14}+73a^{13}+54a^{12}-44a^{11}-95a^{10}-20a^{9}+94a^{8}+92a^{7}-40a^{6}-135a^{5}-55a^{4}+114a^{3}+149a^{2}-20a-116$, $131a^{24}+160a^{23}+122a^{22}+82a^{21}+15a^{20}-75a^{19}-115a^{18}-199a^{17}-166a^{16}-186a^{15}-88a^{14}-24a^{13}+70a^{12}+184a^{11}+187a^{10}+284a^{9}+160a^{8}+182a^{7}-7a^{6}-75a^{5}-190a^{4}-315a^{3}-232a^{2}-357a+584$, $38a^{24}-2a^{23}-29a^{22}+41a^{21}+8a^{20}-47a^{19}+39a^{18}+29a^{17}-64a^{16}+26a^{15}+55a^{14}-84a^{13}+90a^{11}-94a^{10}-37a^{9}+131a^{8}-82a^{7}-90a^{6}+165a^{5}-49a^{4}-170a^{3}+191a^{2}+26a-69$, $157a^{24}-159a^{23}-299a^{22}-40a^{21}+314a^{20}+280a^{19}-153a^{18}-436a^{17}-148a^{16}+392a^{15}+462a^{14}-109a^{13}-614a^{12}-331a^{11}+463a^{10}+728a^{9}+9a^{8}-835a^{7}-635a^{6}+491a^{5}+1099a^{4}+256a^{3}-1075a^{2}-1102a+1201$, $4a^{24}-81a^{23}+147a^{22}-153a^{21}+100a^{20}+14a^{19}-137a^{18}+230a^{17}-231a^{16}+133a^{15}+50a^{14}-244a^{13}+376a^{12}-363a^{11}+192a^{10}+100a^{9}-401a^{8}+588a^{7}-543a^{6}+248a^{5}+221a^{4}-686a^{3}+945a^{2}-830a+346$, $20a^{24}-36a^{23}+33a^{22}-10a^{21}+25a^{20}+25a^{19}-17a^{18}+49a^{17}-65a^{16}+62a^{15}-66a^{14}+58a^{13}-5a^{12}+10a^{11}+72a^{10}-88a^{9}+118a^{8}-167a^{7}+119a^{6}-132a^{5}+61a^{4}+24a^{3}-77a^{2}+199a-161$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7950768287499577.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{12}\cdot 7950768287499577.0 \cdot 1}{2\cdot\sqrt{5691440156356331339844223309247762262821197509765625}}\cr\approx \mathstrut & 0.398984872967519 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^25 + 5*x - 5)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^25 + 5*x - 5, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^25 + 5*x - 5);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^25 + 5*x - 5);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{25}$ (as 25T211):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 15511210043330985984000000
The 1958 conjugacy class representatives for $S_{25}$
Character table for $S_{25}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.11.0.1}{11} }{,}\,{\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.6.0.1}{6} }$ ${\href{/padicField/3.10.0.1}{10} }{,}\,{\href{/padicField/3.9.0.1}{9} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ R ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ $23{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ $20{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ $21{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.14.0.1}{14} }{,}\,{\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.7.0.1}{7} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }$ $17{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $16{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ $19{,}\,{\href{/padicField/53.6.0.1}{6} }$ $25$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $25$$25$$1$$25$
\(127\) Copy content Toggle raw display 127.2.0.1$x^{2} + 126 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
127.2.1.1$x^{2} + 381$$2$$1$$1$$C_2$$[\ ]_{2}$
127.2.0.1$x^{2} + 126 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
127.19.0.1$x^{19} + 30 x + 124$$1$$19$$0$$C_{19}$$[\ ]^{19}$
\(390538849\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$
\(963885163\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(399465067602449\) Copy content Toggle raw display $\Q_{399465067602449}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$