Properties

Label 24.0.348...336.1
Degree $24$
Signature $[0, 12]$
Discriminant $3.485\times 10^{34}$
Root discriminant \(27.50\)
Ramified primes $2,3,7$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $C_2^2\times C_6$ (as 24T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096)
 
gp: K = bnfinit(y^24 - 9*y^18 + 17*y^12 - 576*y^6 + 4096, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096)
 

\( x^{24} - 9x^{18} + 17x^{12} - 576x^{6} + 4096 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(34854715807867200628629234134286336\) \(\medspace = 2^{24}\cdot 3^{36}\cdot 7^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{3/2}7^{1/2}\approx 27.49545416973504$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $24$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(252=2^{2}\cdot 3^{2}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{252}(1,·)$, $\chi_{252}(197,·)$, $\chi_{252}(71,·)$, $\chi_{252}(139,·)$, $\chi_{252}(13,·)$, $\chi_{252}(209,·)$, $\chi_{252}(211,·)$, $\chi_{252}(85,·)$, $\chi_{252}(155,·)$, $\chi_{252}(29,·)$, $\chi_{252}(223,·)$, $\chi_{252}(97,·)$, $\chi_{252}(167,·)$, $\chi_{252}(169,·)$, $\chi_{252}(41,·)$, $\chi_{252}(43,·)$, $\chi_{252}(239,·)$, $\chi_{252}(113,·)$, $\chi_{252}(83,·)$, $\chi_{252}(181,·)$, $\chi_{252}(55,·)$, $\chi_{252}(251,·)$, $\chi_{252}(125,·)$, $\chi_{252}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{6}-\frac{1}{5}$, $\frac{1}{10}a^{13}+\frac{3}{10}a^{7}-\frac{1}{10}a$, $\frac{1}{20}a^{14}+\frac{3}{20}a^{8}+\frac{9}{20}a^{2}$, $\frac{1}{40}a^{15}-\frac{17}{40}a^{9}+\frac{9}{40}a^{3}$, $\frac{1}{80}a^{16}+\frac{23}{80}a^{10}-\frac{31}{80}a^{4}$, $\frac{1}{160}a^{17}+\frac{23}{160}a^{11}+\frac{49}{160}a^{5}$, $\frac{1}{5440}a^{18}+\frac{7}{320}a^{12}+\frac{1}{320}a^{6}-\frac{9}{85}$, $\frac{1}{10880}a^{19}+\frac{7}{640}a^{13}+\frac{1}{640}a^{7}-\frac{9}{170}a$, $\frac{1}{21760}a^{20}+\frac{7}{1280}a^{14}-\frac{639}{1280}a^{8}+\frac{161}{340}a^{2}$, $\frac{1}{43520}a^{21}+\frac{7}{2560}a^{15}-\frac{639}{2560}a^{9}+\frac{161}{680}a^{3}$, $\frac{1}{87040}a^{22}+\frac{7}{5120}a^{16}+\frac{1921}{5120}a^{10}-\frac{519}{1360}a^{4}$, $\frac{1}{174080}a^{23}+\frac{7}{10240}a^{17}-\frac{3199}{10240}a^{11}-\frac{519}{2720}a^{5}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{7}$, which has order $7$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1}{10880} a^{19} + \frac{7}{640} a^{13} + \frac{1}{640} a^{7} - \frac{9}{170} a \)  (order $36$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{99}{87040}a^{22}-\frac{11}{5120}a^{16}-\frac{93}{5120}a^{10}-\frac{44}{85}a^{4}+1$, $\frac{91}{21760}a^{20}-\frac{3}{1280}a^{14}+\frac{91}{1280}a^{8}-\frac{819}{340}a^{2}+1$, $\frac{207}{174080}a^{23}-\frac{27}{21760}a^{20}-\frac{23}{10240}a^{17}+\frac{3}{1280}a^{14}+\frac{271}{10240}a^{11}-\frac{91}{1280}a^{8}-\frac{46}{85}a^{5}+\frac{48}{85}a^{2}$, $\frac{271}{174080}a^{23}-\frac{23}{10240}a^{17}+\frac{271}{10240}a^{11}-\frac{2439}{2720}a^{5}+1$, $\frac{1}{10880}a^{19}+\frac{7}{640}a^{13}+\frac{1}{640}a^{7}-\frac{9}{170}a-1$, $\frac{31}{4352}a^{20}-\frac{3}{1280}a^{14}+\frac{91}{1280}a^{8}-\frac{553}{170}a^{2}$, $\frac{3}{1360}a^{22}+\frac{91}{21760}a^{20}+\frac{19}{5440}a^{18}-\frac{3}{1280}a^{14}+\frac{1}{64}a^{12}+\frac{91}{1280}a^{8}-\frac{9}{64}a^{6}-\frac{1541}{1360}a^{4}-\frac{819}{340}a^{2}-\frac{137}{85}$, $\frac{271}{174080}a^{23}-\frac{1}{680}a^{21}-\frac{1}{10880}a^{19}-\frac{23}{10240}a^{17}-\frac{7}{640}a^{13}+\frac{271}{10240}a^{11}-\frac{1}{640}a^{7}-\frac{2439}{2720}a^{5}+\frac{287}{680}a^{3}+\frac{179}{170}a$, $\frac{99}{87040}a^{23}-\frac{271}{87040}a^{22}+\frac{1}{680}a^{21}+\frac{9}{1088}a^{18}-\frac{11}{5120}a^{17}+\frac{23}{5120}a^{16}-\frac{1}{64}a^{12}-\frac{93}{5120}a^{11}-\frac{271}{5120}a^{10}+\frac{9}{64}a^{6}-\frac{44}{85}a^{5}+\frac{2439}{1360}a^{4}-\frac{287}{680}a^{3}-\frac{64}{17}$, $\frac{99}{87040}a^{22}+\frac{3}{680}a^{21}+\frac{1}{10880}a^{20}-\frac{63}{10880}a^{19}-\frac{11}{5120}a^{16}+\frac{7}{640}a^{14}+\frac{7}{640}a^{13}-\frac{93}{5120}a^{10}+\frac{1}{640}a^{8}+\frac{1}{640}a^{7}-\frac{44}{85}a^{4}-\frac{1541}{680}a^{3}-\frac{9}{170}a^{2}+\frac{224}{85}a$, $\frac{1}{340}a^{22}+\frac{89}{10880}a^{19}-\frac{17}{640}a^{13}+\frac{89}{640}a^{7}-\frac{627}{340}a^{4}-\frac{801}{170}a$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 79907554.2564404 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 79907554.2564404 \cdot 7}{36\cdot\sqrt{34854715807867200628629234134286336}}\cr\approx \mathstrut & 0.315072881552625 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 9*x^18 + 17*x^12 - 576*x^6 + 4096);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_6$ (as 24T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2^2\times C_6$
Character table for $C_2^2\times C_6$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), 6.0.419904.1, \(\Q(\zeta_{36})^+\), \(\Q(\zeta_{9})\), 6.6.144027072.1, 6.0.2250423.1, 6.6.6751269.1, 6.0.432081216.1, 8.0.49787136.1, \(\Q(\zeta_{36})\), 12.0.20743797468893184.1, 12.0.186694177220038656.1, 12.12.186694177220038656.1, 12.0.186694177220038656.2, 12.0.186694177220038656.3, 12.0.45579633110361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{4}$ R ${\href{/padicField/11.6.0.1}{6} }^{4}$ ${\href{/padicField/13.6.0.1}{6} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{12}$ ${\href{/padicField/19.2.0.1}{2} }^{12}$ ${\href{/padicField/23.6.0.1}{6} }^{4}$ ${\href{/padicField/29.6.0.1}{6} }^{4}$ ${\href{/padicField/31.6.0.1}{6} }^{4}$ ${\href{/padicField/37.1.0.1}{1} }^{24}$ ${\href{/padicField/41.6.0.1}{6} }^{4}$ ${\href{/padicField/43.6.0.1}{6} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{12}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.12.26$x^{12} + 12 x^{11} + 98 x^{10} + 542 x^{9} + 2359 x^{8} + 7956 x^{7} + 21831 x^{6} + 47308 x^{5} + 82476 x^{4} + 109442 x^{3} + 112071 x^{2} + 76900 x + 33205$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
2.12.12.26$x^{12} + 12 x^{11} + 98 x^{10} + 542 x^{9} + 2359 x^{8} + 7956 x^{7} + 21831 x^{6} + 47308 x^{5} + 82476 x^{4} + 109442 x^{3} + 112071 x^{2} + 76900 x + 33205$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
\(3\) Copy content Toggle raw display 3.12.18.82$x^{12} + 24 x^{11} + 252 x^{10} + 1558 x^{9} + 6450 x^{8} + 19068 x^{7} + 41627 x^{6} + 68094 x^{5} + 83298 x^{4} + 74306 x^{3} + 45618 x^{2} + 17400 x + 3277$$6$$2$$18$$C_6\times C_2$$[2]_{2}^{2}$
3.12.18.82$x^{12} + 24 x^{11} + 252 x^{10} + 1558 x^{9} + 6450 x^{8} + 19068 x^{7} + 41627 x^{6} + 68094 x^{5} + 83298 x^{4} + 74306 x^{3} + 45618 x^{2} + 17400 x + 3277$$6$$2$$18$$C_6\times C_2$$[2]_{2}^{2}$
\(7\) Copy content Toggle raw display 7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$