Properties

Label 24.0.170...729.1
Degree $24$
Signature $[0, 12]$
Discriminant $1.707\times 10^{30}$
Root discriminant \(18.18\)
Ramified primes $3,13$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)
 
gp: K = bnfinit(y^24 - y^23 + y^21 - y^20 + y^18 - y^17 + y^15 - y^14 + y^12 - y^10 + y^9 - y^7 + y^6 - y^4 + y^3 - y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)
 

\( x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{17} + x^{15} - x^{14} + x^{12} - x^{10} + x^{9} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1706902865139206151939937338729\) \(\medspace = 3^{12}\cdot 13^{22}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(18.18\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}13^{11/12}\approx 18.18341149267149$
Ramified primes:   \(3\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $24$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(39=3\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{39}(1,·)$, $\chi_{39}(2,·)$, $\chi_{39}(4,·)$, $\chi_{39}(5,·)$, $\chi_{39}(7,·)$, $\chi_{39}(8,·)$, $\chi_{39}(10,·)$, $\chi_{39}(11,·)$, $\chi_{39}(14,·)$, $\chi_{39}(16,·)$, $\chi_{39}(17,·)$, $\chi_{39}(19,·)$, $\chi_{39}(20,·)$, $\chi_{39}(22,·)$, $\chi_{39}(23,·)$, $\chi_{39}(25,·)$, $\chi_{39}(28,·)$, $\chi_{39}(29,·)$, $\chi_{39}(31,·)$, $\chi_{39}(32,·)$, $\chi_{39}(34,·)$, $\chi_{39}(35,·)$, $\chi_{39}(37,·)$, $\chi_{39}(38,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -a \)  (order $78$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{3}+1$, $a^{6}+1$, $a^{17}-a^{15}+a^{4}-1$, $a^{6}+a^{3}+1$, $a^{21}+a^{3}$, $a-1$, $a^{2}-1$, $a^{4}-1$, $a^{5}-1$, $a^{7}-1$, $a^{10}-1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2851634.018949717 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 2851634.018949717 \cdot 2}{78\cdot\sqrt{1706902865139206151939937338729}}\cr\approx \mathstrut & 0.211876698285567 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - x^23 + x^21 - x^20 + x^18 - x^17 + x^15 - x^14 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{12}$ (as 24T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-39}) \), 3.3.169.1, \(\Q(\sqrt{-3}, \sqrt{13})\), 4.0.2197.1, 4.4.19773.1, 6.0.771147.1, \(\Q(\zeta_{13})^+\), 6.0.10024911.1, 8.0.390971529.1, 12.0.100498840557921.1, \(\Q(\zeta_{13})\), \(\Q(\zeta_{39})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.12.0.1}{12} }^{2}$ R ${\href{/padicField/5.4.0.1}{4} }^{6}$ ${\href{/padicField/7.12.0.1}{12} }^{2}$ ${\href{/padicField/11.12.0.1}{12} }^{2}$ R ${\href{/padicField/17.6.0.1}{6} }^{4}$ ${\href{/padicField/19.12.0.1}{12} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{4}$ ${\href{/padicField/29.6.0.1}{6} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{6}$ ${\href{/padicField/37.12.0.1}{12} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{12}$ ${\href{/padicField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(13\) Copy content Toggle raw display 13.12.11.4$x^{12} + 13$$12$$1$$11$$C_{12}$$[\ ]_{12}$
13.12.11.4$x^{12} + 13$$12$$1$$11$$C_{12}$$[\ ]_{12}$