Properties

Label 23.1.865...983.1
Degree $23$
Signature $[1, 11]$
Discriminant $-8.650\times 10^{44}$
Root discriminant \(89.90\)
Ramified prime $23$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{23}$ (as 23T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601)
 
gp: K = bnfinit(y^23 - 23*y^20 + 184*y^19 - 1334*y^18 + 3680*y^17 - 7567*y^16 + 3381*y^15 + 48346*y^14 - 105455*y^13 + 165048*y^12 - 1033942*y^11 + 3237457*y^10 - 6694426*y^9 + 24074675*y^8 - 57748676*y^7 + 58090042*y^6 - 24771506*y^5 + 67771087*y^4 - 75769360*y^3 + 19385596*y^2 - 386078*y + 1437601, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601)
 

\( x^{23} - 23 x^{20} + 184 x^{19} - 1334 x^{18} + 3680 x^{17} - 7567 x^{16} + 3381 x^{15} + 48346 x^{14} + \cdots + 1437601 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $23$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 11]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-865004941741938633917747707002884268046728983\) \(\medspace = -\,23^{33}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(89.90\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $23^{67/46}\approx 96.24677714683362$
Ramified primes:   \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-23}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5}a^{12}+\frac{2}{5}a^{10}+\frac{1}{5}a^{9}+\frac{2}{5}a^{8}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{3}+\frac{1}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{13}+\frac{2}{5}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{2}{5}a^{7}-\frac{2}{5}a^{6}+\frac{1}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{1}{5}a$, $\frac{1}{5}a^{14}+\frac{1}{5}a^{11}-\frac{2}{5}a^{10}-\frac{2}{5}a^{9}-\frac{2}{5}a^{8}-\frac{2}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{5}a^{15}-\frac{2}{5}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{7}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}+\frac{2}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}-\frac{1}{5}a-\frac{1}{5}$, $\frac{1}{5}a^{16}+\frac{1}{5}a^{11}+\frac{1}{5}a^{10}-\frac{2}{5}a^{9}-\frac{2}{5}a^{7}+\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{2}{5}a^{4}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}+\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{35}a^{17}-\frac{2}{35}a^{16}-\frac{3}{35}a^{15}+\frac{2}{35}a^{14}+\frac{1}{35}a^{12}+\frac{2}{35}a^{11}-\frac{16}{35}a^{10}-\frac{11}{35}a^{9}+\frac{1}{35}a^{8}+\frac{2}{5}a^{7}+\frac{12}{35}a^{6}+\frac{8}{35}a^{5}+\frac{13}{35}a^{4}+\frac{1}{7}a^{2}+\frac{3}{7}a+\frac{2}{7}$, $\frac{1}{12425}a^{18}+\frac{46}{12425}a^{17}+\frac{874}{12425}a^{16}+\frac{187}{12425}a^{15}-\frac{1143}{12425}a^{14}+\frac{1121}{12425}a^{13}-\frac{874}{12425}a^{12}-\frac{2979}{12425}a^{11}+\frac{313}{12425}a^{10}-\frac{3761}{12425}a^{9}-\frac{2654}{12425}a^{8}-\frac{158}{497}a^{7}-\frac{726}{2485}a^{6}+\frac{3596}{12425}a^{5}-\frac{713}{12425}a^{4}-\frac{2221}{12425}a^{3}-\frac{4078}{12425}a^{2}+\frac{6043}{12425}a-\frac{5414}{12425}$, $\frac{1}{12425}a^{19}-\frac{177}{12425}a^{17}+\frac{14}{1775}a^{16}-\frac{103}{2485}a^{15}+\frac{1159}{12425}a^{14}-\frac{51}{2485}a^{13}+\frac{29}{355}a^{12}-\frac{4653}{12425}a^{11}-\frac{5379}{12425}a^{10}+\frac{2082}{12425}a^{9}+\frac{4889}{12425}a^{8}-\frac{34}{497}a^{7}-\frac{3019}{12425}a^{6}-\frac{6024}{12425}a^{5}-\frac{754}{1775}a^{4}+\frac{6143}{12425}a^{3}-\frac{4814}{12425}a^{2}-\frac{4007}{12425}a-\frac{6201}{12425}$, $\frac{1}{12425}a^{20}+\frac{3}{497}a^{17}-\frac{136}{1775}a^{16}-\frac{887}{12425}a^{15}-\frac{216}{12425}a^{14}+\frac{632}{12425}a^{13}-\frac{1021}{12425}a^{12}+\frac{2678}{12425}a^{11}+\frac{1748}{12425}a^{10}+\frac{3042}{12425}a^{9}+\frac{3317}{12425}a^{8}-\frac{1399}{12425}a^{7}+\frac{3956}{12425}a^{6}-\frac{98}{1775}a^{5}+\frac{4902}{12425}a^{4}-\frac{2816}{12425}a^{3}+\frac{6197}{12425}a^{2}-\frac{673}{2485}a-\frac{3683}{12425}$, $\frac{1}{11617375}a^{21}-\frac{347}{11617375}a^{20}+\frac{333}{11617375}a^{19}+\frac{333}{11617375}a^{18}-\frac{18218}{2323475}a^{17}-\frac{80526}{1659625}a^{16}-\frac{20648}{683375}a^{15}-\frac{9193}{163625}a^{14}+\frac{46103}{11617375}a^{13}-\frac{73632}{1056125}a^{12}+\frac{3874686}{11617375}a^{11}-\frac{5251947}{11617375}a^{10}+\frac{2327211}{11617375}a^{9}+\frac{5104192}{11617375}a^{8}+\frac{3434124}{11617375}a^{7}-\frac{812796}{2323475}a^{6}+\frac{90952}{331925}a^{5}+\frac{1652327}{11617375}a^{4}-\frac{27029}{331925}a^{3}+\frac{343198}{2323475}a^{2}-\frac{656542}{2323475}a-\frac{196844}{1056125}$, $\frac{1}{24\!\cdots\!25}a^{22}+\frac{71\!\cdots\!36}{22\!\cdots\!25}a^{21}+\frac{85\!\cdots\!14}{22\!\cdots\!25}a^{20}-\frac{21\!\cdots\!49}{24\!\cdots\!25}a^{19}-\frac{31\!\cdots\!42}{24\!\cdots\!25}a^{18}+\frac{19\!\cdots\!58}{24\!\cdots\!25}a^{17}+\frac{13\!\cdots\!53}{50\!\cdots\!25}a^{16}-\frac{78\!\cdots\!61}{50\!\cdots\!25}a^{15}-\frac{82\!\cdots\!33}{11\!\cdots\!75}a^{14}+\frac{50\!\cdots\!41}{22\!\cdots\!75}a^{13}-\frac{22\!\cdots\!06}{24\!\cdots\!25}a^{12}+\frac{48\!\cdots\!04}{24\!\cdots\!25}a^{11}-\frac{10\!\cdots\!71}{24\!\cdots\!25}a^{10}-\frac{11\!\cdots\!72}{24\!\cdots\!25}a^{9}-\frac{72\!\cdots\!62}{14\!\cdots\!25}a^{8}-\frac{19\!\cdots\!96}{24\!\cdots\!25}a^{7}+\frac{42\!\cdots\!63}{11\!\cdots\!75}a^{6}+\frac{57\!\cdots\!97}{24\!\cdots\!25}a^{5}+\frac{39\!\cdots\!72}{24\!\cdots\!25}a^{4}+\frac{18\!\cdots\!28}{49\!\cdots\!25}a^{3}-\frac{20\!\cdots\!51}{98\!\cdots\!25}a^{2}+\frac{90\!\cdots\!11}{22\!\cdots\!75}a+\frac{33\!\cdots\!74}{20\!\cdots\!75}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{47\!\cdots\!87}{24\!\cdots\!25}a^{22}+\frac{28\!\cdots\!32}{22\!\cdots\!25}a^{21}+\frac{19\!\cdots\!93}{22\!\cdots\!25}a^{20}-\frac{10\!\cdots\!63}{24\!\cdots\!25}a^{19}+\frac{80\!\cdots\!21}{24\!\cdots\!25}a^{18}-\frac{53\!\cdots\!89}{22\!\cdots\!75}a^{17}+\frac{19\!\cdots\!52}{35\!\cdots\!75}a^{16}-\frac{38\!\cdots\!99}{35\!\cdots\!75}a^{15}-\frac{11\!\cdots\!03}{16\!\cdots\!25}a^{14}+\frac{13\!\cdots\!36}{14\!\cdots\!25}a^{13}-\frac{35\!\cdots\!22}{24\!\cdots\!25}a^{12}+\frac{55\!\cdots\!23}{24\!\cdots\!25}a^{11}-\frac{26\!\cdots\!31}{14\!\cdots\!25}a^{10}+\frac{12\!\cdots\!11}{24\!\cdots\!25}a^{9}-\frac{23\!\cdots\!48}{24\!\cdots\!25}a^{8}+\frac{99\!\cdots\!48}{24\!\cdots\!25}a^{7}-\frac{97\!\cdots\!64}{11\!\cdots\!75}a^{6}+\frac{13\!\cdots\!39}{24\!\cdots\!25}a^{5}-\frac{26\!\cdots\!86}{24\!\cdots\!25}a^{4}+\frac{61\!\cdots\!61}{49\!\cdots\!25}a^{3}-\frac{64\!\cdots\!04}{98\!\cdots\!25}a^{2}-\frac{12\!\cdots\!73}{24\!\cdots\!25}a-\frac{86\!\cdots\!87}{20\!\cdots\!75}$, $\frac{31\!\cdots\!57}{40\!\cdots\!25}a^{22}+\frac{13\!\cdots\!52}{37\!\cdots\!25}a^{21}-\frac{34\!\cdots\!77}{37\!\cdots\!25}a^{20}-\frac{71\!\cdots\!18}{40\!\cdots\!25}a^{19}+\frac{56\!\cdots\!56}{40\!\cdots\!25}a^{18}-\frac{41\!\cdots\!19}{40\!\cdots\!25}a^{17}+\frac{16\!\cdots\!47}{57\!\cdots\!75}a^{16}-\frac{32\!\cdots\!89}{57\!\cdots\!75}a^{15}+\frac{20\!\cdots\!86}{88\!\cdots\!75}a^{14}+\frac{15\!\cdots\!82}{40\!\cdots\!25}a^{13}-\frac{32\!\cdots\!92}{40\!\cdots\!25}a^{12}+\frac{29\!\cdots\!84}{23\!\cdots\!25}a^{11}-\frac{28\!\cdots\!02}{36\!\cdots\!75}a^{10}+\frac{99\!\cdots\!21}{40\!\cdots\!25}a^{9}-\frac{20\!\cdots\!28}{40\!\cdots\!25}a^{8}+\frac{73\!\cdots\!53}{40\!\cdots\!25}a^{7}-\frac{81\!\cdots\!69}{18\!\cdots\!75}a^{6}+\frac{17\!\cdots\!79}{40\!\cdots\!25}a^{5}-\frac{64\!\cdots\!71}{40\!\cdots\!25}a^{4}+\frac{40\!\cdots\!26}{80\!\cdots\!25}a^{3}-\frac{88\!\cdots\!09}{16\!\cdots\!25}a^{2}+\frac{45\!\cdots\!47}{40\!\cdots\!25}a+\frac{90\!\cdots\!43}{33\!\cdots\!75}$, $\frac{33\!\cdots\!06}{70\!\cdots\!75}a^{22}+\frac{10\!\cdots\!62}{64\!\cdots\!75}a^{21}+\frac{24\!\cdots\!36}{92\!\cdots\!25}a^{20}-\frac{51\!\cdots\!77}{70\!\cdots\!75}a^{19}+\frac{71\!\cdots\!43}{14\!\cdots\!75}a^{18}-\frac{27\!\cdots\!92}{70\!\cdots\!75}a^{17}-\frac{46\!\cdots\!61}{63\!\cdots\!25}a^{16}-\frac{41\!\cdots\!13}{70\!\cdots\!75}a^{15}-\frac{59\!\cdots\!42}{11\!\cdots\!75}a^{14}+\frac{71\!\cdots\!04}{41\!\cdots\!75}a^{13}+\frac{18\!\cdots\!46}{70\!\cdots\!75}a^{12}+\frac{25\!\cdots\!28}{70\!\cdots\!75}a^{11}-\frac{12\!\cdots\!87}{41\!\cdots\!75}a^{10}+\frac{75\!\cdots\!92}{70\!\cdots\!75}a^{9}-\frac{26\!\cdots\!96}{70\!\cdots\!75}a^{8}+\frac{75\!\cdots\!41}{14\!\cdots\!75}a^{7}+\frac{11\!\cdots\!89}{65\!\cdots\!05}a^{6}-\frac{11\!\cdots\!23}{70\!\cdots\!75}a^{5}-\frac{38\!\cdots\!31}{14\!\cdots\!75}a^{4}+\frac{12\!\cdots\!47}{18\!\cdots\!75}a^{3}+\frac{16\!\cdots\!93}{14\!\cdots\!75}a^{2}-\frac{48\!\cdots\!59}{70\!\cdots\!75}a-\frac{31\!\cdots\!27}{16\!\cdots\!75}$, $\frac{74\!\cdots\!77}{35\!\cdots\!75}a^{22}-\frac{44\!\cdots\!88}{32\!\cdots\!75}a^{21}-\frac{16\!\cdots\!27}{32\!\cdots\!75}a^{20}-\frac{17\!\cdots\!43}{35\!\cdots\!75}a^{19}+\frac{13\!\cdots\!71}{35\!\cdots\!75}a^{18}-\frac{99\!\cdots\!34}{35\!\cdots\!75}a^{17}+\frac{27\!\cdots\!24}{35\!\cdots\!75}a^{16}-\frac{57\!\cdots\!63}{35\!\cdots\!75}a^{15}+\frac{95\!\cdots\!12}{11\!\cdots\!75}a^{14}+\frac{32\!\cdots\!62}{31\!\cdots\!25}a^{13}-\frac{79\!\cdots\!82}{35\!\cdots\!75}a^{12}+\frac{12\!\cdots\!93}{35\!\cdots\!75}a^{11}-\frac{77\!\cdots\!87}{35\!\cdots\!75}a^{10}+\frac{34\!\cdots\!13}{50\!\cdots\!25}a^{9}-\frac{50\!\cdots\!13}{35\!\cdots\!75}a^{8}+\frac{10\!\cdots\!44}{20\!\cdots\!75}a^{7}-\frac{20\!\cdots\!04}{16\!\cdots\!25}a^{6}+\frac{45\!\cdots\!19}{35\!\cdots\!75}a^{5}-\frac{21\!\cdots\!61}{35\!\cdots\!75}a^{4}+\frac{10\!\cdots\!41}{70\!\cdots\!75}a^{3}-\frac{47\!\cdots\!42}{28\!\cdots\!15}a^{2}+\frac{13\!\cdots\!47}{31\!\cdots\!25}a+\frac{17\!\cdots\!38}{29\!\cdots\!25}$, $\frac{13\!\cdots\!21}{24\!\cdots\!25}a^{22}+\frac{79\!\cdots\!26}{22\!\cdots\!25}a^{21}+\frac{52\!\cdots\!29}{22\!\cdots\!25}a^{20}-\frac{30\!\cdots\!64}{24\!\cdots\!25}a^{19}+\frac{22\!\cdots\!08}{24\!\cdots\!25}a^{18}-\frac{16\!\cdots\!57}{24\!\cdots\!25}a^{17}+\frac{55\!\cdots\!36}{35\!\cdots\!75}a^{16}-\frac{15\!\cdots\!26}{50\!\cdots\!25}a^{15}-\frac{18\!\cdots\!97}{11\!\cdots\!75}a^{14}+\frac{38\!\cdots\!08}{14\!\cdots\!25}a^{13}-\frac{10\!\cdots\!11}{24\!\cdots\!25}a^{12}+\frac{14\!\cdots\!99}{22\!\cdots\!75}a^{11}-\frac{75\!\cdots\!53}{14\!\cdots\!25}a^{10}+\frac{32\!\cdots\!38}{22\!\cdots\!75}a^{9}-\frac{67\!\cdots\!24}{24\!\cdots\!25}a^{8}+\frac{28\!\cdots\!79}{24\!\cdots\!25}a^{7}-\frac{27\!\cdots\!47}{11\!\cdots\!75}a^{6}+\frac{39\!\cdots\!12}{24\!\cdots\!25}a^{5}-\frac{78\!\cdots\!03}{24\!\cdots\!25}a^{4}+\frac{17\!\cdots\!13}{49\!\cdots\!25}a^{3}-\frac{18\!\cdots\!34}{98\!\cdots\!25}a^{2}-\frac{32\!\cdots\!84}{24\!\cdots\!25}a-\frac{24\!\cdots\!51}{20\!\cdots\!75}$, $\frac{14\!\cdots\!54}{35\!\cdots\!75}a^{22}+\frac{64\!\cdots\!84}{29\!\cdots\!25}a^{21}-\frac{62\!\cdots\!14}{29\!\cdots\!25}a^{20}-\frac{32\!\cdots\!86}{35\!\cdots\!75}a^{19}+\frac{25\!\cdots\!67}{35\!\cdots\!75}a^{18}-\frac{18\!\cdots\!93}{35\!\cdots\!75}a^{17}+\frac{51\!\cdots\!23}{35\!\cdots\!75}a^{16}-\frac{10\!\cdots\!01}{35\!\cdots\!75}a^{15}+\frac{12\!\cdots\!09}{11\!\cdots\!75}a^{14}+\frac{69\!\cdots\!14}{35\!\cdots\!75}a^{13}-\frac{14\!\cdots\!39}{35\!\cdots\!75}a^{12}+\frac{22\!\cdots\!36}{35\!\cdots\!75}a^{11}-\frac{14\!\cdots\!24}{35\!\cdots\!75}a^{10}+\frac{45\!\cdots\!32}{35\!\cdots\!75}a^{9}-\frac{91\!\cdots\!76}{35\!\cdots\!75}a^{8}+\frac{33\!\cdots\!21}{35\!\cdots\!75}a^{7}-\frac{36\!\cdots\!38}{16\!\cdots\!25}a^{6}+\frac{75\!\cdots\!13}{35\!\cdots\!75}a^{5}-\frac{24\!\cdots\!97}{35\!\cdots\!75}a^{4}+\frac{17\!\cdots\!27}{70\!\cdots\!75}a^{3}-\frac{56\!\cdots\!43}{20\!\cdots\!25}a^{2}+\frac{15\!\cdots\!34}{35\!\cdots\!75}a+\frac{66\!\cdots\!76}{29\!\cdots\!25}$, $\frac{69\!\cdots\!92}{35\!\cdots\!75}a^{22}+\frac{42\!\cdots\!42}{32\!\cdots\!75}a^{21}+\frac{28\!\cdots\!78}{32\!\cdots\!75}a^{20}-\frac{14\!\cdots\!43}{31\!\cdots\!25}a^{19}+\frac{11\!\cdots\!96}{35\!\cdots\!75}a^{18}-\frac{85\!\cdots\!64}{35\!\cdots\!75}a^{17}+\frac{20\!\cdots\!59}{35\!\cdots\!75}a^{16}-\frac{39\!\cdots\!08}{35\!\cdots\!75}a^{15}-\frac{85\!\cdots\!04}{11\!\cdots\!75}a^{14}+\frac{19\!\cdots\!81}{20\!\cdots\!75}a^{13}-\frac{73\!\cdots\!06}{50\!\cdots\!25}a^{12}+\frac{81\!\cdots\!38}{35\!\cdots\!75}a^{11}-\frac{39\!\cdots\!41}{20\!\cdots\!75}a^{10}+\frac{18\!\cdots\!96}{35\!\cdots\!75}a^{9}-\frac{34\!\cdots\!28}{35\!\cdots\!75}a^{8}+\frac{14\!\cdots\!48}{35\!\cdots\!75}a^{7}-\frac{14\!\cdots\!69}{16\!\cdots\!25}a^{6}+\frac{20\!\cdots\!74}{35\!\cdots\!75}a^{5}-\frac{39\!\cdots\!61}{35\!\cdots\!75}a^{4}+\frac{89\!\cdots\!81}{70\!\cdots\!75}a^{3}-\frac{13\!\cdots\!07}{20\!\cdots\!25}a^{2}-\frac{18\!\cdots\!93}{35\!\cdots\!75}a-\frac{12\!\cdots\!12}{29\!\cdots\!25}$, $\frac{83\!\cdots\!39}{24\!\cdots\!25}a^{22}+\frac{40\!\cdots\!52}{13\!\cdots\!25}a^{21}-\frac{77\!\cdots\!14}{22\!\cdots\!25}a^{20}-\frac{23\!\cdots\!51}{24\!\cdots\!25}a^{19}-\frac{15\!\cdots\!28}{24\!\cdots\!25}a^{18}+\frac{11\!\cdots\!67}{22\!\cdots\!75}a^{17}-\frac{13\!\cdots\!51}{35\!\cdots\!75}a^{16}+\frac{55\!\cdots\!41}{50\!\cdots\!25}a^{15}-\frac{26\!\cdots\!38}{11\!\cdots\!75}a^{14}+\frac{29\!\cdots\!49}{24\!\cdots\!25}a^{13}+\frac{35\!\cdots\!51}{24\!\cdots\!25}a^{12}-\frac{78\!\cdots\!24}{24\!\cdots\!25}a^{11}+\frac{11\!\cdots\!16}{24\!\cdots\!25}a^{10}-\frac{75\!\cdots\!13}{24\!\cdots\!25}a^{9}+\frac{23\!\cdots\!59}{24\!\cdots\!25}a^{8}-\frac{48\!\cdots\!39}{24\!\cdots\!25}a^{7}+\frac{82\!\cdots\!07}{11\!\cdots\!75}a^{6}-\frac{43\!\cdots\!67}{24\!\cdots\!25}a^{5}+\frac{25\!\cdots\!69}{14\!\cdots\!25}a^{4}-\frac{21\!\cdots\!49}{28\!\cdots\!25}a^{3}+\frac{20\!\cdots\!93}{98\!\cdots\!25}a^{2}-\frac{55\!\cdots\!56}{24\!\cdots\!25}a+\frac{13\!\cdots\!66}{20\!\cdots\!75}$, $\frac{11\!\cdots\!43}{24\!\cdots\!25}a^{22}-\frac{56\!\cdots\!67}{22\!\cdots\!25}a^{21}-\frac{24\!\cdots\!43}{22\!\cdots\!25}a^{20}-\frac{26\!\cdots\!62}{24\!\cdots\!25}a^{19}+\frac{20\!\cdots\!99}{22\!\cdots\!75}a^{18}-\frac{16\!\cdots\!56}{24\!\cdots\!25}a^{17}+\frac{71\!\cdots\!13}{35\!\cdots\!75}a^{16}-\frac{15\!\cdots\!31}{35\!\cdots\!75}a^{15}+\frac{35\!\cdots\!39}{11\!\cdots\!75}a^{14}+\frac{54\!\cdots\!88}{24\!\cdots\!25}a^{13}-\frac{15\!\cdots\!13}{24\!\cdots\!25}a^{12}+\frac{24\!\cdots\!12}{24\!\cdots\!25}a^{11}-\frac{12\!\cdots\!83}{24\!\cdots\!25}a^{10}+\frac{25\!\cdots\!07}{14\!\cdots\!25}a^{9}-\frac{93\!\cdots\!67}{24\!\cdots\!25}a^{8}+\frac{30\!\cdots\!07}{24\!\cdots\!25}a^{7}-\frac{21\!\cdots\!63}{67\!\cdots\!75}a^{6}+\frac{56\!\cdots\!13}{14\!\cdots\!25}a^{5}-\frac{51\!\cdots\!99}{24\!\cdots\!25}a^{4}+\frac{16\!\cdots\!54}{49\!\cdots\!25}a^{3}-\frac{49\!\cdots\!29}{98\!\cdots\!25}a^{2}+\frac{51\!\cdots\!78}{24\!\cdots\!25}a-\frac{32\!\cdots\!33}{20\!\cdots\!75}$, $\frac{60\!\cdots\!57}{35\!\cdots\!75}a^{22}+\frac{52\!\cdots\!86}{46\!\cdots\!25}a^{21}+\frac{24\!\cdots\!23}{32\!\cdots\!75}a^{20}-\frac{13\!\cdots\!18}{35\!\cdots\!75}a^{19}+\frac{14\!\cdots\!08}{50\!\cdots\!25}a^{18}-\frac{73\!\cdots\!44}{35\!\cdots\!75}a^{17}+\frac{24\!\cdots\!72}{50\!\cdots\!25}a^{16}-\frac{34\!\cdots\!98}{35\!\cdots\!75}a^{15}-\frac{46\!\cdots\!36}{67\!\cdots\!75}a^{14}+\frac{28\!\cdots\!32}{35\!\cdots\!75}a^{13}-\frac{44\!\cdots\!92}{35\!\cdots\!75}a^{12}+\frac{53\!\cdots\!92}{26\!\cdots\!75}a^{11}-\frac{57\!\cdots\!47}{35\!\cdots\!75}a^{10}+\frac{14\!\cdots\!86}{31\!\cdots\!25}a^{9}-\frac{29\!\cdots\!28}{35\!\cdots\!75}a^{8}+\frac{12\!\cdots\!03}{35\!\cdots\!75}a^{7}-\frac{12\!\cdots\!89}{16\!\cdots\!25}a^{6}+\frac{17\!\cdots\!29}{35\!\cdots\!75}a^{5}-\frac{33\!\cdots\!21}{35\!\cdots\!75}a^{4}+\frac{77\!\cdots\!11}{70\!\cdots\!75}a^{3}-\frac{15\!\cdots\!44}{28\!\cdots\!15}a^{2}-\frac{15\!\cdots\!28}{35\!\cdots\!75}a-\frac{10\!\cdots\!82}{29\!\cdots\!25}$, $\frac{42\!\cdots\!21}{24\!\cdots\!25}a^{22}+\frac{14\!\cdots\!98}{13\!\cdots\!25}a^{21}+\frac{16\!\cdots\!74}{22\!\cdots\!25}a^{20}-\frac{95\!\cdots\!09}{24\!\cdots\!25}a^{19}+\frac{71\!\cdots\!88}{24\!\cdots\!25}a^{18}-\frac{51\!\cdots\!07}{24\!\cdots\!25}a^{17}+\frac{17\!\cdots\!01}{35\!\cdots\!75}a^{16}-\frac{34\!\cdots\!87}{35\!\cdots\!75}a^{15}-\frac{20\!\cdots\!21}{32\!\cdots\!25}a^{14}+\frac{20\!\cdots\!16}{24\!\cdots\!25}a^{13}-\frac{31\!\cdots\!06}{24\!\cdots\!25}a^{12}+\frac{44\!\cdots\!59}{22\!\cdots\!75}a^{11}-\frac{40\!\cdots\!71}{24\!\cdots\!25}a^{10}+\frac{99\!\cdots\!98}{22\!\cdots\!75}a^{9}-\frac{20\!\cdots\!54}{24\!\cdots\!25}a^{8}+\frac{87\!\cdots\!19}{24\!\cdots\!25}a^{7}-\frac{86\!\cdots\!77}{11\!\cdots\!75}a^{6}+\frac{12\!\cdots\!87}{24\!\cdots\!25}a^{5}-\frac{13\!\cdots\!99}{14\!\cdots\!25}a^{4}+\frac{31\!\cdots\!14}{28\!\cdots\!25}a^{3}-\frac{56\!\cdots\!47}{98\!\cdots\!25}a^{2}-\frac{11\!\cdots\!59}{24\!\cdots\!25}a-\frac{76\!\cdots\!11}{20\!\cdots\!75}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 35038470243900 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{11}\cdot 35038470243900 \cdot 1}{2\cdot\sqrt{865004941741938633917747707002884268046728983}}\cr\approx \mathstrut & 0.717818082730424 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - 23*x^20 + 184*x^19 - 1334*x^18 + 3680*x^17 - 7567*x^16 + 3381*x^15 + 48346*x^14 - 105455*x^13 + 165048*x^12 - 1033942*x^11 + 3237457*x^10 - 6694426*x^9 + 24074675*x^8 - 57748676*x^7 + 58090042*x^6 - 24771506*x^5 + 67771087*x^4 - 75769360*x^3 + 19385596*x^2 - 386078*x + 1437601);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{23}$ (as 23T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 46
The 13 conjugacy class representatives for $D_{23}$
Character table for $D_{23}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23$ $23$ ${\href{/padicField/5.2.0.1}{2} }^{11}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.2.0.1}{2} }^{11}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.2.0.1}{2} }^{11}{,}\,{\href{/padicField/11.1.0.1}{1} }$ $23$ ${\href{/padicField/17.2.0.1}{2} }^{11}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.2.0.1}{2} }^{11}{,}\,{\href{/padicField/19.1.0.1}{1} }$ R $23$ $23$ ${\href{/padicField/37.2.0.1}{2} }^{11}{,}\,{\href{/padicField/37.1.0.1}{1} }$ $23$ ${\href{/padicField/43.2.0.1}{2} }^{11}{,}\,{\href{/padicField/43.1.0.1}{1} }$ $23$ ${\href{/padicField/53.2.0.1}{2} }^{11}{,}\,{\href{/padicField/53.1.0.1}{1} }$ $23$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(23\) Copy content Toggle raw display 23.23.33.12$x^{23} + 483 x^{11} + 23$$23$$1$$33$$D_{23}$$[3/2]_{2}$