Properties

Label 23.1.285...320.1
Degree $23$
Signature $[1, 11]$
Discriminant $-2.859\times 10^{40}$
Root discriminant \(57.41\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{23}$ (as 23T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^23 + 8*x - 4)
 
gp: K = bnfinit(y^23 + 8*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^23 + 8*x - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 + 8*x - 4)
 

\( x^{23} + 8x - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $23$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 11]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-28585240626865948858207093238982844088320\) \(\medspace = -\,2^{22}\cdot 5\cdot 24986142523\cdot 54552257894632015274417\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(57.41\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{22/23}5^{1/2}24986142523^{1/2}54552257894632015274417^{1/2}\approx 1.6020745037248333e+17$
Ramified primes:   \(2\), \(5\), \(24986142523\), \(54552257894632015274417\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-68152\!\cdots\!70455}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2}a^{15}$, $\frac{1}{2}a^{16}$, $\frac{1}{2}a^{17}$, $\frac{1}{2}a^{18}$, $\frac{1}{2}a^{19}$, $\frac{1}{2}a^{20}$, $\frac{1}{2}a^{21}$, $\frac{1}{82}a^{22}-\frac{3}{41}a^{21}-\frac{5}{82}a^{20}-\frac{11}{82}a^{19}-\frac{8}{41}a^{18}+\frac{7}{41}a^{17}-\frac{1}{41}a^{16}+\frac{6}{41}a^{15}+\frac{5}{41}a^{14}-\frac{19}{82}a^{13}-\frac{9}{82}a^{12}-\frac{14}{41}a^{11}+\frac{2}{41}a^{10}-\frac{12}{41}a^{9}-\frac{10}{41}a^{8}+\frac{19}{41}a^{7}+\frac{9}{41}a^{6}-\frac{13}{41}a^{5}-\frac{4}{41}a^{4}-\frac{17}{41}a^{3}+\frac{20}{41}a^{2}+\frac{3}{41}a-\frac{14}{41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{41}a^{22}-\frac{6}{41}a^{21}-\frac{5}{41}a^{20}+\frac{19}{82}a^{19}+\frac{9}{82}a^{18}-\frac{13}{82}a^{17}-\frac{2}{41}a^{16}-\frac{17}{82}a^{15}+\frac{10}{41}a^{14}+\frac{3}{82}a^{13}+\frac{23}{82}a^{12}-\frac{28}{41}a^{11}+\frac{4}{41}a^{10}+\frac{17}{41}a^{9}+\frac{21}{41}a^{8}-\frac{44}{41}a^{7}+\frac{18}{41}a^{6}-\frac{26}{41}a^{5}+\frac{33}{41}a^{4}+\frac{7}{41}a^{3}-\frac{1}{41}a^{2}-\frac{35}{41}a+\frac{13}{41}$, $\frac{32}{41}a^{22}+\frac{13}{41}a^{21}+\frac{4}{41}a^{20}-\frac{7}{82}a^{19}+\frac{1}{82}a^{18}-\frac{3}{41}a^{17}-\frac{5}{82}a^{16}-\frac{11}{82}a^{15}-\frac{8}{41}a^{14}-\frac{27}{82}a^{13}-\frac{1}{41}a^{12}+\frac{6}{41}a^{11}+\frac{5}{41}a^{10}+\frac{11}{41}a^{9}+\frac{16}{41}a^{8}+\frac{27}{41}a^{7}+\frac{2}{41}a^{6}+\frac{29}{41}a^{5}-\frac{10}{41}a^{4}-\frac{22}{41}a^{3}-\frac{73}{41}a^{2}-\frac{13}{41}a+\frac{211}{41}$, $\frac{8}{41}a^{22}+\frac{27}{82}a^{21}+\frac{1}{41}a^{20}-\frac{6}{41}a^{19}-\frac{5}{41}a^{18}+\frac{19}{82}a^{17}+\frac{9}{82}a^{16}-\frac{13}{82}a^{15}+\frac{37}{82}a^{14}+\frac{12}{41}a^{13}-\frac{21}{82}a^{12}-\frac{19}{41}a^{11}-\frac{9}{41}a^{10}+\frac{13}{41}a^{9}-\frac{37}{41}a^{8}-\frac{65}{41}a^{7}-\frac{20}{41}a^{6}-\frac{44}{41}a^{5}-\frac{64}{41}a^{4}-\frac{67}{41}a^{3}-\frac{8}{41}a^{2}+\frac{48}{41}a-\frac{19}{41}$, $\frac{400}{41}a^{22}+\frac{407}{82}a^{21}+\frac{91}{41}a^{20}+\frac{28}{41}a^{19}+\frac{33}{82}a^{18}+\frac{24}{41}a^{17}+\frac{20}{41}a^{16}+\frac{3}{41}a^{15}+\frac{5}{82}a^{14}-\frac{15}{41}a^{13}-\frac{25}{82}a^{12}-\frac{7}{41}a^{11}+\frac{42}{41}a^{10}+\frac{35}{41}a^{9}-\frac{5}{41}a^{8}-\frac{52}{41}a^{7}-\frac{16}{41}a^{6}+\frac{14}{41}a^{5}+\frac{39}{41}a^{4}+\frac{12}{41}a^{3}+\frac{10}{41}a^{2}-\frac{19}{41}a+\frac{3109}{41}$, $\frac{156}{41}a^{22}+\frac{301}{82}a^{21}+\frac{122}{41}a^{20}+\frac{47}{41}a^{19}-\frac{36}{41}a^{18}-\frac{265}{82}a^{17}-\frac{419}{82}a^{16}-\frac{260}{41}a^{15}-\frac{529}{82}a^{14}-\frac{393}{82}a^{13}-\frac{92}{41}a^{12}+\frac{60}{41}a^{11}+\frac{214}{41}a^{10}+\frac{356}{41}a^{9}+\frac{447}{41}a^{8}+\frac{434}{41}a^{7}+\frac{348}{41}a^{6}+\frac{167}{41}a^{5}-\frac{59}{41}a^{4}-\frac{343}{41}a^{3}-\frac{566}{41}a^{2}-\frac{704}{41}a+\frac{511}{41}$, $\frac{1457}{82}a^{22}+\frac{385}{41}a^{21}+\frac{191}{41}a^{20}+\frac{84}{41}a^{19}+\frac{17}{82}a^{18}-\frac{10}{41}a^{17}-\frac{22}{41}a^{16}+\frac{9}{41}a^{15}+\frac{28}{41}a^{14}+\frac{115}{82}a^{13}+\frac{89}{82}a^{12}+\frac{20}{41}a^{11}-\frac{38}{41}a^{10}-\frac{59}{41}a^{9}-\frac{56}{41}a^{8}-\frac{33}{41}a^{7}+\frac{34}{41}a^{6}+\frac{83}{41}a^{5}+\frac{117}{41}a^{4}+\frac{36}{41}a^{3}-\frac{11}{41}a^{2}-\frac{139}{41}a+\frac{5719}{41}$, $\frac{5}{82}a^{22}+\frac{11}{82}a^{21}+\frac{8}{41}a^{20}+\frac{27}{82}a^{19}+\frac{1}{41}a^{18}-\frac{6}{41}a^{17}-\frac{5}{41}a^{16}-\frac{11}{41}a^{15}+\frac{9}{82}a^{14}-\frac{27}{41}a^{13}-\frac{2}{41}a^{12}-\frac{29}{41}a^{11}+\frac{10}{41}a^{10}+\frac{22}{41}a^{9}-\frac{9}{41}a^{8}+\frac{54}{41}a^{7}-\frac{37}{41}a^{6}+\frac{99}{41}a^{5}-\frac{61}{41}a^{4}+\frac{79}{41}a^{3}-\frac{105}{41}a^{2}+\frac{56}{41}a-\frac{29}{41}$, $\frac{7}{41}a^{22}+\frac{39}{82}a^{21}-\frac{29}{82}a^{20}-\frac{31}{82}a^{19}+\frac{11}{41}a^{18}+\frac{73}{82}a^{17}-\frac{14}{41}a^{16}-\frac{39}{41}a^{15}+\frac{29}{41}a^{14}+\frac{103}{82}a^{13}-\frac{22}{41}a^{12}-\frac{73}{41}a^{11}+\frac{69}{41}a^{10}+\frac{78}{41}a^{9}-\frac{58}{41}a^{8}-\frac{62}{41}a^{7}+\frac{85}{41}a^{6}+\frac{105}{41}a^{5}-\frac{138}{41}a^{4}-\frac{74}{41}a^{3}+\frac{116}{41}a^{2}+\frac{124}{41}a-\frac{73}{41}$, $\frac{24}{41}a^{22}+\frac{20}{41}a^{21}+\frac{47}{82}a^{20}+\frac{23}{41}a^{19}+\frac{26}{41}a^{18}+\frac{49}{41}a^{17}+\frac{109}{82}a^{16}+\frac{42}{41}a^{15}+\frac{111}{82}a^{14}+\frac{113}{82}a^{13}+\frac{101}{82}a^{12}+\frac{66}{41}a^{11}+\frac{55}{41}a^{10}+\frac{39}{41}a^{9}+\frac{53}{41}a^{8}+\frac{10}{41}a^{7}-\frac{19}{41}a^{6}+\frac{32}{41}a^{5}+\frac{13}{41}a^{4}-\frac{37}{41}a^{3}-\frac{24}{41}a^{2}-\frac{61}{41}a+\frac{107}{41}$, $\frac{39}{82}a^{22}+\frac{6}{41}a^{21}-\frac{31}{82}a^{20}-\frac{19}{82}a^{19}-\frac{9}{82}a^{18}-\frac{14}{41}a^{17}+\frac{45}{82}a^{16}+\frac{29}{41}a^{15}-\frac{10}{41}a^{14}-\frac{3}{82}a^{13}+\frac{59}{82}a^{12}-\frac{13}{41}a^{11}-\frac{86}{41}a^{10}-\frac{17}{41}a^{9}+\frac{20}{41}a^{8}+\frac{3}{41}a^{7}+\frac{64}{41}a^{6}+\frac{67}{41}a^{5}-\frac{33}{41}a^{4}-\frac{48}{41}a^{3}+\frac{83}{41}a^{2}-\frac{47}{41}a-\frac{13}{41}$, $\frac{91}{41}a^{22}-\frac{313}{82}a^{21}-\frac{86}{41}a^{20}+\frac{417}{82}a^{19}+\frac{102}{41}a^{18}-\frac{527}{82}a^{17}-\frac{241}{82}a^{16}+\frac{313}{41}a^{15}+\frac{221}{82}a^{14}-\frac{793}{82}a^{13}-\frac{285}{82}a^{12}+\frac{486}{41}a^{11}+\frac{159}{41}a^{10}-\frac{585}{41}a^{9}-\frac{139}{41}a^{8}+\frac{752}{41}a^{7}+\frac{162}{41}a^{6}-\frac{890}{41}a^{5}-\frac{154}{41}a^{4}+\frac{1088}{41}a^{3}+\frac{114}{41}a^{2}-\frac{1381}{41}a+\frac{609}{41}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 281108277991 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{11}\cdot 281108277991 \cdot 1}{2\cdot\sqrt{28585240626865948858207093238982844088320}}\cr\approx \mathstrut & 1.00180053782095 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^23 + 8*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^23 + 8*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^23 + 8*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 + 8*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{23}$ (as 23T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 25852016738884976640000
The 1255 conjugacy class representatives for $S_{23}$
Character table for $S_{23}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 46 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.9.0.1}{9} }{,}\,{\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ R $19{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ $22{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ $17{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ $18{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }$ $22{,}\,{\href{/padicField/23.1.0.1}{1} }$ $16{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ ${\href{/padicField/37.13.0.1}{13} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ $18{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ $20{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.11.0.1}{11} }{,}\,{\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.23.22.1$x^{23} + 2$$23$$1$$22$$C_{23}:C_{11}$$[\ ]_{23}^{11}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.0.1$x^{8} + x^{4} + 3 x^{2} + 4 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
5.12.0.1$x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(24986142523\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(545\!\cdots\!417\) Copy content Toggle raw display $\Q_{54\!\cdots\!17}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$