Properties

Label 22.4.390...976.1
Degree $22$
Signature $[4, 9]$
Discriminant $-3.903\times 10^{34}$
Root discriminant \(37.35\)
Ramified primes $2,137,293,11093,216649$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.(C_2\times S_{11})$ (as 22T53)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1)
 
gp: K = bnfinit(y^22 + 15*y^20 + 91*y^18 + 279*y^16 + 417*y^14 + 130*y^12 - 453*y^10 - 544*y^8 - 66*y^6 + 185*y^4 + 75*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1)
 

\( x^{22} + 15 x^{20} + 91 x^{18} + 279 x^{16} + 417 x^{14} + 130 x^{12} - 453 x^{10} - 544 x^{8} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-39034415726392643532837005585022976\) \(\medspace = -\,2^{22}\cdot 137^{2}\cdot 293^{2}\cdot 11093^{2}\cdot 216649^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(37.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(137\), \(293\), \(11093\), \(216649\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $3a^{21}+40a^{19}+206a^{17}+489a^{15}+411a^{13}-356a^{11}-817a^{9}-222a^{7}+278a^{5}+118a^{3}-6a$, $7a^{21}+96a^{19}+514a^{17}+1298a^{15}+1281a^{13}-662a^{11}-2254a^{9}-961a^{7}+649a^{5}+426a^{3}+18a$, $a^{2}+1$, $a$, $a^{21}+14a^{19}+77a^{17}+202a^{15}+215a^{13}-85a^{11}-368a^{9}-176a^{7}+110a^{5}+75a^{3}-a$, $16a^{20}+217a^{18}+1144a^{16}+2819a^{14}+2619a^{12}-1681a^{10}-4819a^{8}-1769a^{6}+1475a^{4}+826a^{2}+13$, $3a^{20}+40a^{18}+206a^{16}+490a^{14}+420a^{12}-330a^{10}-800a^{8}-256a^{6}+242a^{4}+129a^{2}+3$, $a^{20}+15a^{18}+89a^{16}+255a^{14}+311a^{12}-61a^{10}-493a^{8}-275a^{6}+137a^{4}+106a^{2}+5$, $13a^{20}+177a^{18}+938a^{16}+2329a^{14}+2199a^{12}-1351a^{10}-4019a^{8}-1512a^{6}+1237a^{4}+699a^{2}+8$, $12a^{20}+163a^{18}+861a^{16}+2127a^{14}+1984a^{12}-1266a^{10}-3651a^{8}-1336a^{6}+1127a^{4}+623a^{2}+7$, $5a^{21}+5a^{20}+66a^{19}+67a^{18}+332a^{17}+345a^{16}+738a^{15}+803a^{14}+421a^{13}+571a^{12}-1052a^{11}-922a^{10}-1648a^{9}-1713a^{8}-135a^{7}-308a^{6}+898a^{5}+831a^{4}+379a^{3}+388a^{2}+a+5$, $37\!\cdots\!51a^{21}+35\!\cdots\!41a^{20}+59\!\cdots\!03a^{19}+57\!\cdots\!49a^{18}+39\!\cdots\!73a^{17}+38\!\cdots\!71a^{16}+14\!\cdots\!36a^{15}+13\!\cdots\!36a^{14}+28\!\cdots\!96a^{13}+27\!\cdots\!67a^{12}+31\!\cdots\!89a^{11}+30\!\cdots\!11a^{10}+12\!\cdots\!67a^{9}+11\!\cdots\!22a^{8}-89\!\cdots\!74a^{7}-85\!\cdots\!00a^{6}-10\!\cdots\!43a^{5}-10\!\cdots\!78a^{4}-30\!\cdots\!45a^{3}-29\!\cdots\!32a^{2}-40\!\cdots\!71a-38\!\cdots\!74$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 311350306.426 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{9}\cdot 311350306.426 \cdot 1}{2\cdot\sqrt{39034415726392643532837005585022976}}\cr\approx \mathstrut & 0.192412932297 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 + 15*x^20 + 91*x^18 + 279*x^16 + 417*x^14 + 130*x^12 - 453*x^10 - 544*x^8 - 66*x^6 + 185*x^4 + 75*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.(C_2\times S_{11})$ (as 22T53):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 81749606400
The 752 conjugacy class representatives for $C_2^{10}.(C_2\times S_{11})$
Character table for $C_2^{10}.(C_2\times S_{11})$

Intermediate fields

11.11.96470357797337.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 44 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $18{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/5.6.0.1}{6} }$ ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.7.0.1}{7} }^{2}$ ${\href{/padicField/13.11.0.1}{11} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.7.0.1}{7} }^{2}$ ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.14.0.1}{14} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.6.0.1}{6} }$ ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ ${\href{/padicField/47.14.0.1}{14} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.9.0.1}{9} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $22$$2$$11$$22$
\(137\) Copy content Toggle raw display $\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
$\Q_{137}$$x + 134$$1$$1$$0$Trivial$[\ ]$
137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$
137.2.1.2$x^{2} + 411$$2$$1$$1$$C_2$$[\ ]_{2}$
137.4.0.1$x^{4} + x^{2} + 95 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
137.12.0.1$x^{12} + x^{8} + 61 x^{7} + 40 x^{6} + 40 x^{5} + 12 x^{4} + 36 x^{3} + 135 x^{2} + 61 x + 3$$1$$12$$0$$C_{12}$$[\ ]^{12}$
\(293\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
\(11093\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$
\(216649\) Copy content Toggle raw display $\Q_{216649}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{216649}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$