Properties

Label 22.14.316...496.1
Degree $22$
Signature $[14, 4]$
Discriminant $3.169\times 10^{32}$
Root discriminant \(30.01\)
Ramified primes $2,151,2311,24910163$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.S_{11}$ (as 22T51)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1)
 
gp: K = bnfinit(y^22 - 14*y^20 + 84*y^18 - 285*y^16 + 607*y^14 - 843*y^12 + 745*y^10 - 363*y^8 + 45*y^6 + 29*y^4 - 6*y^2 - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1)
 

\( x^{22} - 14 x^{20} + 84 x^{18} - 285 x^{16} + 607 x^{14} - 843 x^{12} + 745 x^{10} - 363 x^{8} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[14, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(316932538277153190033818958954496\) \(\medspace = 2^{22}\cdot 151^{2}\cdot 2311^{2}\cdot 24910163^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(151\), \(2311\), \(24910163\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{21}-14a^{19}+83a^{17}-273a^{15}+548a^{13}-687a^{11}+500a^{9}-133a^{7}-61a^{5}+29a^{3}+3a$, $a$, $a^{21}-13a^{19}+71a^{17}-214a^{15}+393a^{13}-450a^{11}+295a^{9}-68a^{7}-23a^{5}+6a^{3}$, $a^{3}-2a$, $a^{17}-11a^{15}+50a^{13}-124a^{11}+186a^{9}-169a^{7}+77a^{5}-4a^{3}-5a$, $a^{20}-13a^{18}+71a^{16}-215a^{14}+402a^{12}-482a^{10}+355a^{8}-134a^{6}+14a^{4}+3a^{2}-1$, $a^{20}-13a^{18}+71a^{16}-214a^{14}+393a^{12}-450a^{10}+295a^{8}-68a^{6}-23a^{4}+5a^{2}+2$, $a^{21}-15a^{19}+96a^{17}-344a^{15}+763a^{13}-1089a^{11}+982a^{9}-488a^{7}+73a^{5}+15a^{3}$, $2a^{21}-29a^{19}+180a^{17}-629a^{15}+1370a^{13}-1932a^{11}+1727a^{9}-851a^{7}+118a^{5}+44a^{3}-7a$, $a^{21}-14a^{19}+83a^{17}-273a^{15}+548a^{13}-687a^{11}+500a^{9}-133a^{7}-61a^{5}+29a^{3}+3a+1$, $a^{21}-a^{20}-13a^{19}+13a^{18}+71a^{17}-71a^{16}-214a^{15}+214a^{14}+393a^{13}-393a^{12}-450a^{11}+450a^{10}+295a^{9}-295a^{8}-68a^{7}+68a^{6}-23a^{5}+23a^{4}+6a^{3}-6a^{2}$, $a^{2}-a-1$, $a^{21}+a^{20}-13a^{19}-13a^{18}+72a^{17}+71a^{16}-226a^{15}-215a^{14}+452a^{13}+402a^{12}-606a^{11}-482a^{10}+541a^{9}+355a^{8}-304a^{7}-134a^{6}+96a^{5}+14a^{4}-9a^{3}+3a^{2}-a-1$, $2a^{21}-3a^{20}-29a^{19}+39a^{18}+179a^{17}-214a^{16}-618a^{15}+653a^{14}+1320a^{13}-1227a^{12}-1808a^{11}+1458a^{10}+1541a^{9}-1022a^{8}-682a^{7}+297a^{6}+41a^{5}+56a^{4}+48a^{3}-31a^{2}-a-4$, $a^{21}+a^{20}-14a^{19}-11a^{18}+82a^{17}+48a^{16}-262a^{15}-105a^{14}+498a^{13}+113a^{12}-563a^{11}-19a^{10}+314a^{9}-104a^{8}+36a^{7}+115a^{6}-138a^{5}-28a^{4}+34a^{3}-7a^{2}+7a$, $2a^{21}-3a^{20}-27a^{19}+41a^{18}+154a^{17}-238a^{16}-487a^{15}+772a^{14}+940a^{13}-1548a^{12}-1129a^{11}+1980a^{10}+771a^{9}-1541a^{8}-166a^{7}+570a^{6}-109a^{5}+26a^{4}+35a^{3}-50a^{2}+12a-3$, $2a^{20}-26a^{18}+142a^{16}-428a^{14}+785a^{12}-892a^{10}+566a^{8}-100a^{6}-76a^{4}+20a^{2}+a+4$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 228691447.993 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 228691447.993 \cdot 1}{2\cdot\sqrt{316932538277153190033818958954496}}\cr\approx \mathstrut & 0.164012114201 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 14*x^20 + 84*x^18 - 285*x^16 + 607*x^14 - 843*x^12 + 745*x^10 - 363*x^8 + 45*x^6 + 29*x^4 - 6*x^2 - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.S_{11}$ (as 22T51):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 40874803200
The 376 conjugacy class representatives for $C_2^{10}.S_{11}$ are not computed
Character table for $C_2^{10}.S_{11}$ is not computed

Intermediate fields

11.9.8692675390643.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 44 sibling: data not computed
Minimal sibling: 22.4.89814816729714094690034635615977259767382470415665884551559211803518872278540698479285989313375051412956223992468516612438569815867619968291363094528.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.11.0.1}{11} }^{2}$ ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.10.0.1}{10} }$ ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.11.0.1}{11} }^{2}$ ${\href{/padicField/13.11.0.1}{11} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/19.6.0.1}{6} }$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ $16{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.11.0.1}{11} }^{2}$ ${\href{/padicField/43.11.0.1}{11} }^{2}$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.10.0.1}{10} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.10.6$x^{10} - 6 x^{9} + 42 x^{8} - 104 x^{7} - 256 x^{6} - 112 x^{5} - 1568 x^{4} - 2016 x^{3} - 2832 x^{2} - 4960 x - 3616$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
2.12.12.6$x^{12} + 16 x^{11} + 120 x^{10} - 1052 x^{8} - 1904 x^{7} - 736 x^{6} + 3104 x^{5} + 15856 x^{4} + 18368 x^{3} + 28160 x^{2} + 14208 x + 11200$$2$$6$$12$12T105$[2, 2, 2, 2]^{12}$
\(151\) Copy content Toggle raw display $\Q_{151}$$x + 145$$1$$1$$0$Trivial$[\ ]$
$\Q_{151}$$x + 145$$1$$1$$0$Trivial$[\ ]$
151.4.2.1$x^{4} + 298 x^{3} + 22515 x^{2} + 46786 x + 3373376$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
151.8.0.1$x^{8} + 9 x^{4} + 140 x^{3} + 122 x^{2} + 43 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
151.8.0.1$x^{8} + 9 x^{4} + 140 x^{3} + 122 x^{2} + 43 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
\(2311\) Copy content Toggle raw display Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(24910163\) Copy content Toggle raw display $\Q_{24910163}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{24910163}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{24910163}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{24910163}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$