Properties

Label 22.14.315...056.1
Degree $22$
Signature $[14, 4]$
Discriminant $3.156\times 10^{32}$
Root discriminant \(30.01\)
Ramified primes $2,8674315276967$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.S_{11}$ (as 22T51)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1)
 
gp: K = bnfinit(y^22 - 12*y^20 + 58*y^18 - 144*y^16 + 193*y^14 - 130*y^12 + 21*y^10 + 40*y^8 - 45*y^6 + 18*y^4 - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1)
 

\( x^{22} - 12x^{20} + 58x^{18} - 144x^{16} + 193x^{14} - 130x^{12} + 21x^{10} + 40x^{8} - 45x^{6} + 18x^{4} - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[14, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(315595142827230969392399757869056\) \(\medspace = 2^{22}\cdot 8674315276967^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(30.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(8674315276967\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{20}-12a^{18}+57a^{16}-134a^{14}+156a^{12}-69a^{10}-20a^{8}+44a^{6}-35a^{4}+5a^{2}+3$, $a^{21}-11a^{19}+47a^{17}-97a^{15}+96a^{13}-34a^{11}-13a^{9}+27a^{7}-18a^{5}$, $a^{20}-11a^{18}+48a^{16}-106a^{14}+125a^{12}-73a^{10}+5a^{8}+29a^{6}-27a^{4}+9a^{2}$, $4a^{21}-46a^{19}+209a^{17}-472a^{15}+540a^{13}-261a^{11}-35a^{9}+140a^{7}-113a^{5}+21a^{3}+7a$, $4a^{20}-46a^{18}+209a^{16}-472a^{14}+540a^{12}-261a^{10}-35a^{8}+140a^{6}-112a^{4}+18a^{2}+8$, $4a^{20}-45a^{18}+199a^{16}-434a^{14}+472a^{12}-204a^{10}-51a^{8}+129a^{6}-95a^{4}+11a^{2}+8$, $4a^{21}-45a^{19}+199a^{17}-434a^{15}+472a^{13}-204a^{11}-51a^{9}+129a^{7}-95a^{5}+11a^{3}+9a$, $6a^{21}-69a^{19}+313a^{17}-703a^{15}+792a^{13}-365a^{11}-63a^{9}+205a^{7}-165a^{5}+22a^{3}+12a$, $a-1$, $4a^{21}-45a^{19}-a^{18}+199a^{17}+10a^{16}-434a^{15}-37a^{14}+472a^{13}+60a^{12}-204a^{11}-35a^{10}-50a^{9}-7a^{8}+124a^{7}+16a^{6}-89a^{5}-13a^{4}+12a^{3}+3a^{2}+7a+1$, $a^{2}+a-1$, $a^{21}+a^{20}-11a^{19}-12a^{18}+47a^{17}+57a^{16}-97a^{15}-134a^{14}+96a^{13}+156a^{12}-34a^{11}-69a^{10}-13a^{9}-20a^{8}+27a^{7}+44a^{6}-18a^{5}-34a^{4}+2a^{2}+4$, $a^{21}+a^{20}-11a^{19}-12a^{18}+47a^{17}+57a^{16}-97a^{15}-134a^{14}+96a^{13}+156a^{12}-34a^{11}-70a^{10}-13a^{9}-15a^{8}+28a^{7}+38a^{6}-22a^{5}-35a^{4}+2a^{3}+5a^{2}+3a+3$, $2a^{21}+a^{20}-23a^{19}-11a^{18}+105a^{17}+47a^{16}-240a^{15}-97a^{14}+281a^{13}+96a^{12}-142a^{11}-34a^{10}-14a^{9}-13a^{8}+68a^{7}+28a^{6}-56a^{5}-21a^{4}+14a^{3}+3a+2$, $a^{21}+4a^{20}-11a^{19}-45a^{18}+47a^{17}+199a^{16}-97a^{15}-434a^{14}+96a^{13}+472a^{12}-34a^{11}-204a^{10}-13a^{9}-51a^{8}+27a^{7}+129a^{6}-18a^{5}-95a^{4}+12a^{2}+7$, $4a^{21}+3a^{20}-46a^{19}-36a^{18}+209a^{17}+171a^{16}-472a^{15}-404a^{14}+540a^{13}+482a^{12}-261a^{11}-240a^{10}-35a^{9}-30a^{8}+140a^{7}+122a^{6}-113a^{5}-103a^{4}+20a^{3}+17a^{2}+8a+8$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 262128409.062 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 262128409.062 \cdot 1}{2\cdot\sqrt{315595142827230969392399757869056}}\cr\approx \mathstrut & 0.188390220060 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 12*x^20 + 58*x^18 - 144*x^16 + 193*x^14 - 130*x^12 + 21*x^10 + 40*x^8 - 45*x^6 + 18*x^4 - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.S_{11}$ (as 22T51):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 40874803200
The 376 conjugacy class representatives for $C_2^{10}.S_{11}$
Character table for $C_2^{10}.S_{11}$

Intermediate fields

11.9.8674315276967.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 44 sibling: data not computed
Minimal sibling: 22.4.87750002479670632534243431065508320574647330919687899613924773423575897287324522118580170655687148440732006564632195586415317917246456646341473861632.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.11.0.1}{11} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{3}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ $18{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.11.0.1}{11} }^{2}$ $16{,}\,{\href{/padicField/13.6.0.1}{6} }$ $18{,}\,{\href{/padicField/17.4.0.1}{4} }$ ${\href{/padicField/19.10.0.1}{10} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.11.0.1}{11} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.11.0.1}{11} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}$ ${\href{/padicField/47.7.0.1}{7} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $22$$2$$11$$22$
\(8674315276967\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$
Deg $9$$1$$9$$0$$C_9$$[\ ]^{9}$