Properties

Label 21.7.105...767.1
Degree $21$
Signature $[7, 7]$
Discriminant $-1.051\times 10^{29}$
Root discriminant \(24.10\)
Ramified primes $17,23,64879$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_3\times S_7$ (as 21T74)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1)
 
gp: K = bnfinit(y^21 - y^20 - 6*y^19 + 11*y^18 + 47*y^17 - 45*y^16 - 170*y^15 + 162*y^14 + 400*y^13 - 307*y^12 - 750*y^11 + 395*y^10 + 733*y^9 - 371*y^8 - 425*y^7 + 197*y^6 + 204*y^5 - 78*y^4 - 36*y^3 + 17*y^2 - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1)
 

\( x^{21} - x^{20} - 6 x^{19} + 11 x^{18} + 47 x^{17} - 45 x^{16} - 170 x^{15} + 162 x^{14} + 400 x^{13} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[7, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-105070765003019731854543276767\) \(\medspace = -\,17^{3}\cdot 23^{8}\cdot 64879^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.10\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{1/2}23^{1/2}64879^{1/2}\approx 5036.634689949233$
Ramified primes:   \(17\), \(23\), \(64879\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1102943}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23}a^{17}+\frac{3}{23}a^{16}-\frac{5}{23}a^{15}-\frac{5}{23}a^{14}-\frac{9}{23}a^{13}+\frac{11}{23}a^{12}-\frac{7}{23}a^{11}+\frac{11}{23}a^{9}-\frac{7}{23}a^{8}+\frac{9}{23}a^{7}-\frac{5}{23}a^{6}-\frac{4}{23}a^{5}-\frac{11}{23}a^{4}+\frac{10}{23}a^{3}+\frac{1}{23}a^{2}-\frac{7}{23}a-\frac{9}{23}$, $\frac{1}{23}a^{18}+\frac{9}{23}a^{16}+\frac{10}{23}a^{15}+\frac{6}{23}a^{14}-\frac{8}{23}a^{13}+\frac{6}{23}a^{12}-\frac{2}{23}a^{11}+\frac{11}{23}a^{10}+\frac{6}{23}a^{9}+\frac{7}{23}a^{8}-\frac{9}{23}a^{7}+\frac{11}{23}a^{6}+\frac{1}{23}a^{5}-\frac{3}{23}a^{4}-\frac{6}{23}a^{3}-\frac{10}{23}a^{2}-\frac{11}{23}a+\frac{4}{23}$, $\frac{1}{23}a^{19}+\frac{6}{23}a^{16}+\frac{5}{23}a^{15}-\frac{9}{23}a^{14}-\frac{5}{23}a^{13}-\frac{9}{23}a^{12}+\frac{5}{23}a^{11}+\frac{6}{23}a^{10}+\frac{8}{23}a^{8}-\frac{1}{23}a^{7}+\frac{10}{23}a^{5}+\frac{1}{23}a^{4}-\frac{8}{23}a^{3}+\frac{3}{23}a^{2}-\frac{2}{23}a-\frac{11}{23}$, $\frac{1}{29\!\cdots\!63}a^{20}-\frac{48\!\cdots\!88}{29\!\cdots\!63}a^{19}+\frac{12\!\cdots\!24}{29\!\cdots\!63}a^{18}+\frac{50\!\cdots\!21}{29\!\cdots\!63}a^{17}-\frac{17\!\cdots\!49}{17\!\cdots\!39}a^{16}+\frac{70\!\cdots\!41}{29\!\cdots\!63}a^{15}+\frac{10\!\cdots\!86}{29\!\cdots\!63}a^{14}-\frac{14\!\cdots\!67}{29\!\cdots\!63}a^{13}-\frac{52\!\cdots\!89}{29\!\cdots\!63}a^{12}+\frac{14\!\cdots\!02}{29\!\cdots\!63}a^{11}+\frac{52\!\cdots\!66}{12\!\cdots\!81}a^{10}-\frac{69\!\cdots\!94}{29\!\cdots\!63}a^{9}+\frac{12\!\cdots\!36}{29\!\cdots\!63}a^{8}+\frac{65\!\cdots\!81}{29\!\cdots\!63}a^{7}-\frac{83\!\cdots\!57}{29\!\cdots\!63}a^{6}-\frac{68\!\cdots\!56}{29\!\cdots\!63}a^{5}+\frac{12\!\cdots\!16}{29\!\cdots\!63}a^{4}-\frac{28\!\cdots\!65}{29\!\cdots\!63}a^{3}+\frac{29\!\cdots\!46}{29\!\cdots\!63}a^{2}+\frac{11\!\cdots\!76}{29\!\cdots\!63}a+\frac{12\!\cdots\!82}{29\!\cdots\!63}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{64\!\cdots\!52}{29\!\cdots\!63}a^{20}-\frac{37\!\cdots\!21}{29\!\cdots\!63}a^{19}-\frac{27\!\cdots\!74}{29\!\cdots\!63}a^{18}+\frac{27\!\cdots\!72}{29\!\cdots\!63}a^{17}+\frac{49\!\cdots\!30}{17\!\cdots\!39}a^{16}-\frac{19\!\cdots\!06}{29\!\cdots\!63}a^{15}-\frac{67\!\cdots\!38}{29\!\cdots\!63}a^{14}+\frac{68\!\cdots\!43}{29\!\cdots\!63}a^{13}+\frac{97\!\cdots\!55}{29\!\cdots\!63}a^{12}-\frac{16\!\cdots\!24}{29\!\cdots\!63}a^{11}-\frac{33\!\cdots\!68}{29\!\cdots\!63}a^{10}+\frac{28\!\cdots\!78}{29\!\cdots\!63}a^{9}+\frac{70\!\cdots\!27}{29\!\cdots\!63}a^{8}-\frac{27\!\cdots\!97}{29\!\cdots\!63}a^{7}-\frac{43\!\cdots\!30}{29\!\cdots\!63}a^{6}+\frac{16\!\cdots\!52}{29\!\cdots\!63}a^{5}+\frac{20\!\cdots\!25}{29\!\cdots\!63}a^{4}-\frac{71\!\cdots\!40}{29\!\cdots\!63}a^{3}-\frac{14\!\cdots\!05}{29\!\cdots\!63}a^{2}+\frac{11\!\cdots\!93}{29\!\cdots\!63}a-\frac{13\!\cdots\!76}{29\!\cdots\!63}$, $\frac{30\!\cdots\!69}{29\!\cdots\!63}a^{20}-\frac{10\!\cdots\!38}{29\!\cdots\!63}a^{19}-\frac{19\!\cdots\!00}{29\!\cdots\!63}a^{18}+\frac{21\!\cdots\!34}{29\!\cdots\!63}a^{17}+\frac{41\!\cdots\!26}{74\!\cdots\!93}a^{16}-\frac{42\!\cdots\!02}{29\!\cdots\!63}a^{15}-\frac{25\!\cdots\!53}{12\!\cdots\!81}a^{14}+\frac{16\!\cdots\!45}{29\!\cdots\!63}a^{13}+\frac{14\!\cdots\!60}{29\!\cdots\!63}a^{12}-\frac{15\!\cdots\!32}{29\!\cdots\!63}a^{11}-\frac{26\!\cdots\!38}{29\!\cdots\!63}a^{10}-\frac{23\!\cdots\!11}{29\!\cdots\!63}a^{9}+\frac{25\!\cdots\!05}{29\!\cdots\!63}a^{8}+\frac{15\!\cdots\!30}{29\!\cdots\!63}a^{7}-\frac{15\!\cdots\!08}{29\!\cdots\!63}a^{6}-\frac{77\!\cdots\!17}{29\!\cdots\!63}a^{5}+\frac{66\!\cdots\!84}{29\!\cdots\!63}a^{4}+\frac{11\!\cdots\!33}{29\!\cdots\!63}a^{3}-\frac{44\!\cdots\!83}{12\!\cdots\!81}a^{2}+\frac{13\!\cdots\!76}{29\!\cdots\!63}a-\frac{64\!\cdots\!52}{29\!\cdots\!63}$, $\frac{49\!\cdots\!96}{29\!\cdots\!63}a^{20}-\frac{25\!\cdots\!51}{29\!\cdots\!63}a^{19}-\frac{33\!\cdots\!06}{29\!\cdots\!63}a^{18}+\frac{26\!\cdots\!28}{29\!\cdots\!63}a^{17}+\frac{16\!\cdots\!27}{17\!\cdots\!39}a^{16}+\frac{15\!\cdots\!21}{29\!\cdots\!63}a^{15}-\frac{97\!\cdots\!16}{29\!\cdots\!63}a^{14}+\frac{14\!\cdots\!68}{12\!\cdots\!81}a^{13}+\frac{24\!\cdots\!62}{29\!\cdots\!63}a^{12}+\frac{26\!\cdots\!33}{29\!\cdots\!63}a^{11}-\frac{44\!\cdots\!33}{29\!\cdots\!63}a^{10}-\frac{12\!\cdots\!36}{29\!\cdots\!63}a^{9}+\frac{41\!\cdots\!94}{29\!\cdots\!63}a^{8}+\frac{84\!\cdots\!09}{29\!\cdots\!63}a^{7}-\frac{25\!\cdots\!12}{29\!\cdots\!63}a^{6}-\frac{45\!\cdots\!53}{29\!\cdots\!63}a^{5}+\frac{11\!\cdots\!75}{29\!\cdots\!63}a^{4}+\frac{29\!\cdots\!31}{29\!\cdots\!63}a^{3}-\frac{19\!\cdots\!36}{29\!\cdots\!63}a^{2}+\frac{19\!\cdots\!61}{29\!\cdots\!63}a+\frac{57\!\cdots\!69}{29\!\cdots\!63}$, $\frac{80\!\cdots\!65}{29\!\cdots\!63}a^{20}-\frac{13\!\cdots\!89}{29\!\cdots\!63}a^{19}-\frac{53\!\cdots\!06}{29\!\cdots\!63}a^{18}+\frac{48\!\cdots\!62}{29\!\cdots\!63}a^{17}+\frac{25\!\cdots\!25}{17\!\cdots\!39}a^{16}-\frac{41\!\cdots\!81}{29\!\cdots\!63}a^{15}-\frac{15\!\cdots\!35}{29\!\cdots\!63}a^{14}+\frac{19\!\cdots\!09}{29\!\cdots\!63}a^{13}+\frac{39\!\cdots\!22}{29\!\cdots\!63}a^{12}+\frac{11\!\cdots\!01}{29\!\cdots\!63}a^{11}-\frac{70\!\cdots\!71}{29\!\cdots\!63}a^{10}-\frac{14\!\cdots\!47}{29\!\cdots\!63}a^{9}+\frac{66\!\cdots\!99}{29\!\cdots\!63}a^{8}+\frac{99\!\cdots\!39}{29\!\cdots\!63}a^{7}-\frac{41\!\cdots\!20}{29\!\cdots\!63}a^{6}-\frac{52\!\cdots\!70}{29\!\cdots\!63}a^{5}+\frac{77\!\cdots\!33}{12\!\cdots\!81}a^{4}+\frac{41\!\cdots\!64}{29\!\cdots\!63}a^{3}-\frac{30\!\cdots\!45}{29\!\cdots\!63}a^{2}+\frac{32\!\cdots\!37}{29\!\cdots\!63}a+\frac{34\!\cdots\!80}{29\!\cdots\!63}$, $\frac{37\!\cdots\!65}{29\!\cdots\!63}a^{20}-\frac{38\!\cdots\!21}{29\!\cdots\!63}a^{19}+\frac{15\!\cdots\!27}{29\!\cdots\!63}a^{18}+\frac{23\!\cdots\!45}{29\!\cdots\!63}a^{17}-\frac{12\!\cdots\!72}{17\!\cdots\!39}a^{16}-\frac{16\!\cdots\!05}{29\!\cdots\!63}a^{15}+\frac{90\!\cdots\!81}{29\!\cdots\!63}a^{14}+\frac{57\!\cdots\!32}{29\!\cdots\!63}a^{13}-\frac{39\!\cdots\!03}{29\!\cdots\!63}a^{12}-\frac{12\!\cdots\!17}{29\!\cdots\!63}a^{11}+\frac{66\!\cdots\!74}{29\!\cdots\!63}a^{10}+\frac{22\!\cdots\!69}{29\!\cdots\!63}a^{9}-\frac{90\!\cdots\!55}{29\!\cdots\!63}a^{8}-\frac{17\!\cdots\!29}{29\!\cdots\!63}a^{7}+\frac{82\!\cdots\!11}{29\!\cdots\!63}a^{6}+\frac{76\!\cdots\!55}{29\!\cdots\!63}a^{5}-\frac{36\!\cdots\!79}{29\!\cdots\!63}a^{4}-\frac{40\!\cdots\!91}{29\!\cdots\!63}a^{3}+\frac{15\!\cdots\!27}{29\!\cdots\!63}a^{2}-\frac{18\!\cdots\!95}{29\!\cdots\!63}a+\frac{29\!\cdots\!57}{29\!\cdots\!63}$, $\frac{49\!\cdots\!96}{29\!\cdots\!63}a^{20}-\frac{25\!\cdots\!51}{29\!\cdots\!63}a^{19}-\frac{33\!\cdots\!06}{29\!\cdots\!63}a^{18}+\frac{26\!\cdots\!28}{29\!\cdots\!63}a^{17}+\frac{16\!\cdots\!27}{17\!\cdots\!39}a^{16}+\frac{15\!\cdots\!21}{29\!\cdots\!63}a^{15}-\frac{97\!\cdots\!16}{29\!\cdots\!63}a^{14}+\frac{14\!\cdots\!68}{12\!\cdots\!81}a^{13}+\frac{24\!\cdots\!62}{29\!\cdots\!63}a^{12}+\frac{26\!\cdots\!33}{29\!\cdots\!63}a^{11}-\frac{44\!\cdots\!33}{29\!\cdots\!63}a^{10}-\frac{12\!\cdots\!36}{29\!\cdots\!63}a^{9}+\frac{41\!\cdots\!94}{29\!\cdots\!63}a^{8}+\frac{84\!\cdots\!09}{29\!\cdots\!63}a^{7}-\frac{25\!\cdots\!12}{29\!\cdots\!63}a^{6}-\frac{45\!\cdots\!53}{29\!\cdots\!63}a^{5}+\frac{11\!\cdots\!75}{29\!\cdots\!63}a^{4}+\frac{29\!\cdots\!31}{29\!\cdots\!63}a^{3}-\frac{19\!\cdots\!36}{29\!\cdots\!63}a^{2}+\frac{19\!\cdots\!61}{29\!\cdots\!63}a+\frac{34\!\cdots\!32}{29\!\cdots\!63}$, $\frac{80\!\cdots\!65}{29\!\cdots\!63}a^{20}-\frac{13\!\cdots\!89}{29\!\cdots\!63}a^{19}-\frac{53\!\cdots\!06}{29\!\cdots\!63}a^{18}+\frac{48\!\cdots\!62}{29\!\cdots\!63}a^{17}+\frac{25\!\cdots\!25}{17\!\cdots\!39}a^{16}-\frac{41\!\cdots\!81}{29\!\cdots\!63}a^{15}-\frac{15\!\cdots\!35}{29\!\cdots\!63}a^{14}+\frac{19\!\cdots\!09}{29\!\cdots\!63}a^{13}+\frac{39\!\cdots\!22}{29\!\cdots\!63}a^{12}+\frac{11\!\cdots\!01}{29\!\cdots\!63}a^{11}-\frac{70\!\cdots\!71}{29\!\cdots\!63}a^{10}-\frac{14\!\cdots\!47}{29\!\cdots\!63}a^{9}+\frac{66\!\cdots\!99}{29\!\cdots\!63}a^{8}+\frac{99\!\cdots\!39}{29\!\cdots\!63}a^{7}-\frac{41\!\cdots\!20}{29\!\cdots\!63}a^{6}-\frac{52\!\cdots\!70}{29\!\cdots\!63}a^{5}+\frac{77\!\cdots\!33}{12\!\cdots\!81}a^{4}+\frac{41\!\cdots\!64}{29\!\cdots\!63}a^{3}-\frac{30\!\cdots\!45}{29\!\cdots\!63}a^{2}+\frac{32\!\cdots\!37}{29\!\cdots\!63}a+\frac{50\!\cdots\!17}{29\!\cdots\!63}$, $\frac{20\!\cdots\!84}{29\!\cdots\!63}a^{20}-\frac{74\!\cdots\!48}{29\!\cdots\!63}a^{19}-\frac{95\!\cdots\!18}{29\!\cdots\!63}a^{18}+\frac{55\!\cdots\!43}{29\!\cdots\!63}a^{17}+\frac{32\!\cdots\!63}{17\!\cdots\!39}a^{16}-\frac{36\!\cdots\!14}{29\!\cdots\!63}a^{15}-\frac{24\!\cdots\!14}{29\!\cdots\!63}a^{14}+\frac{12\!\cdots\!48}{29\!\cdots\!63}a^{13}+\frac{43\!\cdots\!08}{29\!\cdots\!63}a^{12}-\frac{28\!\cdots\!05}{29\!\cdots\!63}a^{11}-\frac{10\!\cdots\!87}{29\!\cdots\!63}a^{10}+\frac{48\!\cdots\!62}{29\!\cdots\!63}a^{9}+\frac{15\!\cdots\!70}{29\!\cdots\!63}a^{8}-\frac{42\!\cdots\!85}{29\!\cdots\!63}a^{7}-\frac{83\!\cdots\!61}{29\!\cdots\!63}a^{6}+\frac{22\!\cdots\!66}{29\!\cdots\!63}a^{5}+\frac{50\!\cdots\!42}{29\!\cdots\!63}a^{4}-\frac{96\!\cdots\!75}{29\!\cdots\!63}a^{3}-\frac{16\!\cdots\!01}{29\!\cdots\!63}a^{2}+\frac{68\!\cdots\!68}{29\!\cdots\!63}a-\frac{22\!\cdots\!85}{29\!\cdots\!63}$, $\frac{24\!\cdots\!99}{29\!\cdots\!63}a^{20}-\frac{29\!\cdots\!00}{29\!\cdots\!63}a^{19}-\frac{14\!\cdots\!85}{29\!\cdots\!63}a^{18}+\frac{29\!\cdots\!75}{29\!\cdots\!63}a^{17}+\frac{64\!\cdots\!73}{17\!\cdots\!39}a^{16}-\frac{13\!\cdots\!99}{29\!\cdots\!63}a^{15}-\frac{38\!\cdots\!29}{29\!\cdots\!63}a^{14}+\frac{47\!\cdots\!36}{29\!\cdots\!63}a^{13}+\frac{88\!\cdots\!06}{29\!\cdots\!63}a^{12}-\frac{92\!\cdots\!75}{29\!\cdots\!63}a^{11}-\frac{16\!\cdots\!16}{29\!\cdots\!63}a^{10}+\frac{12\!\cdots\!76}{29\!\cdots\!63}a^{9}+\frac{14\!\cdots\!62}{29\!\cdots\!63}a^{8}-\frac{12\!\cdots\!26}{29\!\cdots\!63}a^{7}-\frac{76\!\cdots\!21}{29\!\cdots\!63}a^{6}+\frac{66\!\cdots\!71}{29\!\cdots\!63}a^{5}+\frac{34\!\cdots\!06}{29\!\cdots\!63}a^{4}-\frac{27\!\cdots\!92}{29\!\cdots\!63}a^{3}-\frac{23\!\cdots\!49}{29\!\cdots\!63}a^{2}+\frac{58\!\cdots\!24}{29\!\cdots\!63}a-\frac{14\!\cdots\!09}{29\!\cdots\!63}$, $\frac{12\!\cdots\!33}{29\!\cdots\!63}a^{20}-\frac{11\!\cdots\!36}{29\!\cdots\!63}a^{19}-\frac{70\!\cdots\!80}{29\!\cdots\!63}a^{18}+\frac{13\!\cdots\!88}{29\!\cdots\!63}a^{17}+\frac{32\!\cdots\!67}{17\!\cdots\!39}a^{16}-\frac{53\!\cdots\!08}{29\!\cdots\!63}a^{15}-\frac{19\!\cdots\!47}{29\!\cdots\!63}a^{14}+\frac{19\!\cdots\!61}{29\!\cdots\!63}a^{13}+\frac{45\!\cdots\!79}{29\!\cdots\!63}a^{12}-\frac{36\!\cdots\!17}{29\!\cdots\!63}a^{11}-\frac{83\!\cdots\!90}{29\!\cdots\!63}a^{10}+\frac{46\!\cdots\!45}{29\!\cdots\!63}a^{9}+\frac{76\!\cdots\!21}{29\!\cdots\!63}a^{8}-\frac{45\!\cdots\!85}{29\!\cdots\!63}a^{7}-\frac{40\!\cdots\!02}{29\!\cdots\!63}a^{6}+\frac{23\!\cdots\!21}{29\!\cdots\!63}a^{5}+\frac{18\!\cdots\!71}{29\!\cdots\!63}a^{4}-\frac{91\!\cdots\!49}{29\!\cdots\!63}a^{3}-\frac{12\!\cdots\!21}{29\!\cdots\!63}a^{2}+\frac{19\!\cdots\!70}{29\!\cdots\!63}a-\frac{48\!\cdots\!34}{29\!\cdots\!63}$, $\frac{65\!\cdots\!51}{29\!\cdots\!63}a^{20}+\frac{19\!\cdots\!76}{29\!\cdots\!63}a^{19}-\frac{77\!\cdots\!97}{29\!\cdots\!63}a^{18}-\frac{66\!\cdots\!35}{29\!\cdots\!63}a^{17}+\frac{38\!\cdots\!29}{17\!\cdots\!39}a^{16}+\frac{77\!\cdots\!00}{29\!\cdots\!63}a^{15}-\frac{27\!\cdots\!46}{29\!\cdots\!63}a^{14}-\frac{25\!\cdots\!89}{29\!\cdots\!63}a^{13}+\frac{84\!\cdots\!25}{29\!\cdots\!63}a^{12}+\frac{53\!\cdots\!06}{29\!\cdots\!63}a^{11}-\frac{16\!\cdots\!16}{29\!\cdots\!63}a^{10}-\frac{10\!\cdots\!17}{29\!\cdots\!63}a^{9}+\frac{20\!\cdots\!43}{29\!\cdots\!63}a^{8}+\frac{68\!\cdots\!60}{29\!\cdots\!63}a^{7}-\frac{16\!\cdots\!45}{29\!\cdots\!63}a^{6}-\frac{64\!\cdots\!41}{29\!\cdots\!63}a^{5}+\frac{75\!\cdots\!58}{29\!\cdots\!63}a^{4}+\frac{38\!\cdots\!26}{29\!\cdots\!63}a^{3}-\frac{29\!\cdots\!06}{29\!\cdots\!63}a^{2}+\frac{90\!\cdots\!36}{29\!\cdots\!63}a+\frac{12\!\cdots\!38}{29\!\cdots\!63}$, $\frac{25\!\cdots\!00}{29\!\cdots\!63}a^{20}-\frac{19\!\cdots\!87}{29\!\cdots\!63}a^{19}-\frac{15\!\cdots\!24}{29\!\cdots\!63}a^{18}+\frac{24\!\cdots\!10}{29\!\cdots\!63}a^{17}+\frac{73\!\cdots\!77}{17\!\cdots\!39}a^{16}-\frac{84\!\cdots\!31}{29\!\cdots\!63}a^{15}-\frac{44\!\cdots\!36}{29\!\cdots\!63}a^{14}+\frac{30\!\cdots\!60}{29\!\cdots\!63}a^{13}+\frac{10\!\cdots\!51}{29\!\cdots\!63}a^{12}-\frac{51\!\cdots\!70}{29\!\cdots\!63}a^{11}-\frac{19\!\cdots\!67}{29\!\cdots\!63}a^{10}+\frac{50\!\cdots\!83}{29\!\cdots\!63}a^{9}+\frac{18\!\cdots\!11}{29\!\cdots\!63}a^{8}-\frac{47\!\cdots\!62}{29\!\cdots\!63}a^{7}-\frac{10\!\cdots\!10}{29\!\cdots\!63}a^{6}+\frac{23\!\cdots\!78}{29\!\cdots\!63}a^{5}+\frac{48\!\cdots\!45}{29\!\cdots\!63}a^{4}-\frac{73\!\cdots\!26}{29\!\cdots\!63}a^{3}-\frac{69\!\cdots\!52}{29\!\cdots\!63}a^{2}+\frac{21\!\cdots\!94}{29\!\cdots\!63}a+\frac{53\!\cdots\!21}{12\!\cdots\!81}$, $\frac{29\!\cdots\!97}{29\!\cdots\!63}a^{20}-\frac{17\!\cdots\!65}{29\!\cdots\!63}a^{19}-\frac{18\!\cdots\!05}{29\!\cdots\!63}a^{18}+\frac{25\!\cdots\!35}{29\!\cdots\!63}a^{17}+\frac{87\!\cdots\!66}{17\!\cdots\!39}a^{16}-\frac{33\!\cdots\!72}{12\!\cdots\!81}a^{15}-\frac{53\!\cdots\!17}{29\!\cdots\!63}a^{14}+\frac{27\!\cdots\!42}{29\!\cdots\!63}a^{13}+\frac{13\!\cdots\!52}{29\!\cdots\!63}a^{12}-\frac{43\!\cdots\!77}{29\!\cdots\!63}a^{11}-\frac{24\!\cdots\!47}{29\!\cdots\!63}a^{10}+\frac{29\!\cdots\!71}{29\!\cdots\!63}a^{9}+\frac{24\!\cdots\!11}{29\!\cdots\!63}a^{8}-\frac{24\!\cdots\!95}{29\!\cdots\!63}a^{7}-\frac{15\!\cdots\!10}{29\!\cdots\!63}a^{6}+\frac{85\!\cdots\!92}{29\!\cdots\!63}a^{5}+\frac{75\!\cdots\!57}{29\!\cdots\!63}a^{4}+\frac{78\!\cdots\!63}{29\!\cdots\!63}a^{3}-\frac{15\!\cdots\!99}{29\!\cdots\!63}a^{2}+\frac{79\!\cdots\!79}{29\!\cdots\!63}a+\frac{10\!\cdots\!33}{29\!\cdots\!63}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2726200.25314 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 2726200.25314 \cdot 1}{2\cdot\sqrt{105070765003019731854543276767}}\cr\approx \mathstrut & 0.208092227523 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 6*x^19 + 11*x^18 + 47*x^17 - 45*x^16 - 170*x^15 + 162*x^14 + 400*x^13 - 307*x^12 - 750*x^11 + 395*x^10 + 733*x^9 - 371*x^8 - 425*x^7 + 197*x^6 + 204*x^5 - 78*x^4 - 36*x^3 + 17*x^2 - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3\times S_7$ (as 21T74):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 30240
The 45 conjugacy class representatives for $S_3\times S_7$
Character table for $S_3\times S_7$ is not computed

Intermediate fields

3.1.23.1, 7.7.25367689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21$ $21$ ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.7.0.1}{7} }$ ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.7.0.1}{7} }$ ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ R ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ R $15{,}\,{\href{/padicField/29.6.0.1}{6} }$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{3}$ ${\href{/padicField/37.6.0.1}{6} }^{3}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display 17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.3.0.1$x^{3} + x + 14$$1$$3$$0$$C_3$$[\ ]^{3}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.6.0.1$x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
\(23\) Copy content Toggle raw display $\Q_{23}$$x + 18$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 18$$1$$1$$0$Trivial$[\ ]$
23.2.1.1$x^{2} + 115$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.3.0.1$x^{3} + 2 x + 18$$1$$3$$0$$C_3$$[\ ]^{3}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.6.3.2$x^{6} + 73 x^{4} + 36 x^{3} + 1591 x^{2} - 2412 x + 10467$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(64879\) Copy content Toggle raw display $\Q_{64879}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$2$$2$$2$