Normalized defining polynomial
\( x^{20} - 8 x^{19} + 38 x^{18} - 133 x^{17} + 323 x^{16} - 570 x^{15} + 608 x^{14} + 608 x^{13} - 2280 x^{12} + 5662 x^{11} - 2527 x^{10} + 4731 x^{9} + 8265 x^{8} - 6935 x^{7} + 27265 x^{6} - 20539 x^{5} + 29469 x^{4} - 20178 x^{3} + 16226 x^{2} - 6696 x + 729 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-558854584859141340505879659895771\)\(\medspace = -\,7^{10}\cdot 19^{19}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $43.39$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 19$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} + \frac{2}{9} a$, $\frac{1}{45} a^{13} - \frac{2}{45} a^{12} - \frac{1}{45} a^{11} - \frac{7}{45} a^{10} + \frac{2}{45} a^{9} - \frac{2}{15} a^{8} + \frac{1}{45} a^{7} + \frac{22}{45} a^{6} + \frac{13}{45} a^{5} - \frac{4}{45} a^{4} - \frac{7}{15} a^{3} + \frac{2}{5} a^{2} + \frac{8}{45} a - \frac{2}{5}$, $\frac{1}{45} a^{14} + \frac{2}{15} a^{11} - \frac{2}{45} a^{10} - \frac{2}{45} a^{9} - \frac{1}{45} a^{8} - \frac{1}{45} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{16}{45} a^{4} + \frac{1}{45} a^{3} - \frac{11}{45} a^{2} + \frac{8}{45} a + \frac{1}{5}$, $\frac{1}{135} a^{15} + \frac{1}{135} a^{14} + \frac{2}{45} a^{12} - \frac{11}{135} a^{11} - \frac{19}{135} a^{10} - \frac{2}{15} a^{9} - \frac{2}{135} a^{8} - \frac{4}{135} a^{7} - \frac{7}{45} a^{6} - \frac{62}{135} a^{5} + \frac{62}{135} a^{4} - \frac{11}{27} a^{3} - \frac{1}{45} a^{2} - \frac{43}{135} a + \frac{2}{5}$, $\frac{1}{135} a^{16} - \frac{1}{135} a^{14} - \frac{1}{27} a^{12} - \frac{2}{135} a^{11} - \frac{2}{135} a^{10} + \frac{4}{135} a^{9} - \frac{11}{135} a^{8} + \frac{22}{135} a^{7} - \frac{38}{135} a^{6} - \frac{44}{135} a^{5} - \frac{16}{45} a^{4} - \frac{2}{135} a^{3} + \frac{32}{135} a^{2} + \frac{4}{135} a + \frac{2}{5}$, $\frac{1}{135} a^{17} + \frac{1}{135} a^{14} + \frac{1}{135} a^{13} + \frac{7}{135} a^{12} - \frac{19}{135} a^{11} + \frac{2}{15} a^{10} - \frac{17}{135} a^{9} + \frac{14}{135} a^{8} - \frac{7}{45} a^{7} + \frac{67}{135} a^{6} + \frac{28}{135} a^{5} + \frac{4}{15} a^{4} + \frac{16}{135} a^{3} - \frac{56}{135} a^{2} + \frac{44}{135} a - \frac{2}{5}$, $\frac{1}{2025} a^{18} + \frac{7}{2025} a^{17} - \frac{1}{405} a^{16} + \frac{1}{2025} a^{15} - \frac{17}{2025} a^{14} + \frac{2}{2025} a^{13} + \frac{34}{2025} a^{12} - \frac{61}{675} a^{11} + \frac{308}{2025} a^{10} - \frac{134}{2025} a^{9} + \frac{11}{225} a^{8} + \frac{98}{2025} a^{7} + \frac{2}{225} a^{6} - \frac{919}{2025} a^{5} + \frac{796}{2025} a^{4} + \frac{37}{225} a^{3} + \frac{776}{2025} a^{2} + \frac{26}{675} a + \frac{8}{25}$, $\frac{1}{1486299344023045856654884219725} a^{19} + \frac{19799292315508951344617354}{87429373177826226862052012925} a^{18} + \frac{73355763810520263497339284}{114330718771003527434991093825} a^{17} - \frac{5337429646775956199944866824}{1486299344023045856654884219725} a^{16} - \frac{4657498925220160484004727676}{1486299344023045856654884219725} a^{15} + \frac{913188289314214809706021723}{297259868804609171330976843945} a^{14} - \frac{3797741184436848776229886139}{1486299344023045856654884219725} a^{13} - \frac{85936255733656706112123302}{12703413196778169714999010425} a^{12} - \frac{40229454640718049499902381026}{297259868804609171330976843945} a^{11} + \frac{67045699865285811184058958229}{1486299344023045856654884219725} a^{10} + \frac{664646400220409725397642332}{19817324586973944755398456263} a^{9} + \frac{62302299384296487929898445262}{1486299344023045856654884219725} a^{8} + \frac{12912145933134306396767316257}{495433114674348618884961406575} a^{7} - \frac{23694780683256160578769307242}{114330718771003527434991093825} a^{6} + \frac{18001307206740566375813567396}{87429373177826226862052012925} a^{5} + \frac{229983918148422167554682139298}{495433114674348618884961406575} a^{4} - \frac{129816578006258372469643589131}{1486299344023045856654884219725} a^{3} + \frac{3219072564131263512561634288}{495433114674348618884961406575} a^{2} - \frac{68423867988464735805928786463}{495433114674348618884961406575} a + \frac{1769269393939747239258651038}{18349374617568467366109681725}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1336347065.64 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 40 |
The 13 conjugacy class representatives for $D_{20}$ |
Character table for $D_{20}$ |
Intermediate fields
\(\Q(\sqrt{133}) \), 4.2.336091.1, 5.1.6385729.1, 10.2.5423412136571653.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | data not computed |
Degree 20 sibling: | Deg 20 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19 | Data not computed |
Additional information
This field is associated with the points of order 19 on an elliptic curve in the isogeny class 49.a, which has complex multiplication by $\Q(\sqrt{-7})$.