Normalized defining polynomial
\( x^{20} - 5 x^{19} + 76 x^{18} - 247 x^{17} + 1197 x^{16} - 8474 x^{15} + 15561 x^{14} - 112347 x^{13} + 325793 x^{12} - 787322 x^{11} + 3851661 x^{10} - 5756183 x^{9} + 20865344 x^{8} - 48001353 x^{7} + 45895165 x^{6} - 245996344 x^{5} + 8889264 x^{4} - 588303992 x^{3} - 54940704 x^{2} - 538817408 x + 31141888 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-206007596521214410095208558252435839890349094339\)\(\medspace = -\,19^{37}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $232.11$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $19$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4}$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{9} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{32} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{13} + \frac{1}{32} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} - \frac{3}{32} a^{5} + \frac{1}{16} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{10} - \frac{1}{8} a^{7} + \frac{1}{32} a^{6} - \frac{1}{8} a^{5} + \frac{1}{16} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{11} + \frac{1}{64} a^{10} - \frac{3}{64} a^{9} - \frac{1}{8} a^{8} + \frac{7}{64} a^{7} - \frac{1}{64} a^{6} - \frac{11}{64} a^{5} - \frac{1}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{32} a^{11} + \frac{1}{64} a^{9} - \frac{3}{64} a^{8} + \frac{1}{32} a^{7} + \frac{3}{32} a^{6} + \frac{3}{64} a^{5} + \frac{1}{16} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{128} a^{17} - \frac{1}{128} a^{15} - \frac{1}{64} a^{13} + \frac{3}{128} a^{11} + \frac{3}{64} a^{9} - \frac{1}{128} a^{7} + \frac{1}{16} a^{6} + \frac{25}{128} a^{5} + \frac{1}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{512} a^{18} - \frac{1}{256} a^{17} + \frac{1}{512} a^{16} - \frac{1}{256} a^{15} + \frac{1}{256} a^{14} - \frac{1}{256} a^{13} - \frac{7}{512} a^{12} + \frac{5}{256} a^{11} - \frac{7}{256} a^{10} - \frac{7}{256} a^{9} + \frac{9}{512} a^{8} + \frac{29}{256} a^{7} + \frac{49}{512} a^{6} - \frac{5}{32} a^{5} + \frac{7}{64} a^{4} + \frac{9}{64} a^{3} + \frac{5}{16} a^{2}$, $\frac{1}{1066474769403131349909817646245942282985387136771725317498655232} a^{19} - \frac{327001297411492430773000872987840937471084301871628924711285}{1066474769403131349909817646245942282985387136771725317498655232} a^{18} - \frac{96765668110611742058045365085329471764581761321096930506271}{355491589801043783303272548748647427661795712257241772499551744} a^{17} - \frac{457073508586348366861875082056444259453072194213159606292789}{1066474769403131349909817646245942282985387136771725317498655232} a^{16} - \frac{1874941055747880561354776714534093998026394368032156907629737}{266618692350782837477454411561485570746346784192931329374663808} a^{15} - \frac{91109881256331467265801648049521705853929972147715345322793}{44436448725130472912909068593580928457724464032155221562443968} a^{14} - \frac{727270510696475805664024592062179540921987404327465405747667}{355491589801043783303272548748647427661795712257241772499551744} a^{13} - \frac{3239250353798595746850556241442815506400019069618688860023035}{355491589801043783303272548748647427661795712257241772499551744} a^{12} + \frac{3351165368661455915495612756926163442415241283477696446938111}{133309346175391418738727205780742785373173392096465664687331904} a^{11} + \frac{930697583471393946663355399505815845561176310830366530375633}{88872897450260945825818137187161856915448928064310443124887936} a^{10} - \frac{20580725715039412497030785901878117708429264363362093891252951}{355491589801043783303272548748647427661795712257241772499551744} a^{9} + \frac{6138884095615287307437208393849775481404352406583838085949263}{1066474769403131349909817646245942282985387136771725317498655232} a^{8} - \frac{42528155647583197091120077664555270511727207476051448195381379}{355491589801043783303272548748647427661795712257241772499551744} a^{7} + \frac{24316185183362434798017451336120028276709441749010478346804127}{355491589801043783303272548748647427661795712257241772499551744} a^{6} - \frac{32661042924148404781980135617215868435999782993378554550016615}{266618692350782837477454411561485570746346784192931329374663808} a^{5} - \frac{2213153332968011924028976074022931933907524913217140006126999}{11109112181282618228227267148395232114431116008038805390610992} a^{4} + \frac{1658706607018617403552292323702272511291318658008815619096119}{44436448725130472912909068593580928457724464032155221562443968} a^{3} + \frac{958459834359645579684637976429900972375911574840978569980505}{4165917067980981835585225180648212042911668503014552021479122} a^{2} + \frac{1758738090251872159348099188849946617109469136568922898614195}{8331834135961963671170450361296424085823337006029104042958244} a - \frac{180261549118181503756152399635571866947075775327783766413777}{2082958533990490917792612590324106021455834251507276010739561}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 496592090559000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 6840 |
The 21 conjugacy class representatives for t20n362 |
Character table for t20n362 is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 40 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $20$ | $18{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | $18{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $19{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $18{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
19 | Data not computed |
Additional information
This field is associated with the 19-torsion points on any elliptic curve in the isogeny class 19.a.