Properties

Label 20.0.90823333566...0736.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{10}\cdot 47^{8}\cdot 193^{2}$
Root discriminant $11.17$
Ramified primes $2, 47, 193$
Class number $1$
Class group Trivial
Galois Group 20T853

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 6, 0, 17, 0, 36, 0, 55, 0, 65, 0, 59, 0, 42, 0, 22, 0, 7, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 7*x^18 + 22*x^16 + 42*x^14 + 59*x^12 + 65*x^10 + 55*x^8 + 36*x^6 + 17*x^4 + 6*x^2 + 1)
gp: K = bnfinit(x^20 + 7*x^18 + 22*x^16 + 42*x^14 + 59*x^12 + 65*x^10 + 55*x^8 + 36*x^6 + 17*x^4 + 6*x^2 + 1, 1)

Normalized defining polynomial

\(x^{20} \) \(\mathstrut +\mathstrut 7 x^{18} \) \(\mathstrut +\mathstrut 22 x^{16} \) \(\mathstrut +\mathstrut 42 x^{14} \) \(\mathstrut +\mathstrut 59 x^{12} \) \(\mathstrut +\mathstrut 65 x^{10} \) \(\mathstrut +\mathstrut 55 x^{8} \) \(\mathstrut +\mathstrut 36 x^{6} \) \(\mathstrut +\mathstrut 17 x^{4} \) \(\mathstrut +\mathstrut 6 x^{2} \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $20$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[0, 10]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(908233335668669940736=2^{10}\cdot 47^{8}\cdot 193^{2}\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $11.17$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 47, 193$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{22} a^{18} - \frac{1}{22} a^{16} + \frac{4}{11} a^{14} - \frac{1}{2} a^{13} - \frac{7}{22} a^{10} - \frac{1}{2} a^{5} + \frac{3}{22} a^{4} - \frac{1}{2} a^{3} + \frac{2}{11} a^{2} - \frac{1}{2} a - \frac{2}{11}$, $\frac{1}{22} a^{19} - \frac{1}{22} a^{17} - \frac{3}{22} a^{15} - \frac{1}{2} a^{14} - \frac{7}{22} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{4}{11} a^{5} - \frac{7}{22} a^{3} - \frac{1}{2} a^{2} - \frac{2}{11} a - \frac{1}{2}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial Abelian group, order $1$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $9$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  \( \frac{15}{11} a^{18} + \frac{95}{11} a^{16} + \frac{263}{11} a^{14} + 39 a^{12} + \frac{522}{11} a^{10} + 45 a^{8} + 31 a^{6} + \frac{177}{11} a^{4} + \frac{49}{11} a^{2} + \frac{17}{11} \),  \( \frac{5}{11} a^{18} + \frac{39}{11} a^{16} + \frac{139}{11} a^{14} + 27 a^{12} + \frac{438}{11} a^{10} + 44 a^{8} + 38 a^{6} + \frac{268}{11} a^{4} + \frac{119}{11} a^{2} + \frac{35}{11} \),  \( a^{19} + 7 a^{17} + 22 a^{15} + 42 a^{13} + 59 a^{11} + 65 a^{9} + 55 a^{7} + 36 a^{5} + 17 a^{3} + 6 a \),  \( \frac{6}{11} a^{18} + \frac{38}{11} a^{16} + \frac{103}{11} a^{14} + 15 a^{12} + \frac{211}{11} a^{10} + 21 a^{8} + 17 a^{6} + \frac{128}{11} a^{4} + \frac{68}{11} a^{2} + \frac{20}{11} \),  \( \frac{12}{11} a^{19} + \frac{5}{22} a^{18} + \frac{87}{11} a^{17} + \frac{14}{11} a^{16} + \frac{555}{22} a^{15} + \frac{31}{11} a^{14} + \frac{95}{2} a^{13} + 3 a^{12} + \frac{1405}{22} a^{11} + \frac{21}{11} a^{10} + \frac{135}{2} a^{9} + 54 a^{7} - 3 a^{6} + \frac{699}{22} a^{5} - \frac{95}{22} a^{4} + \frac{147}{11} a^{3} - \frac{34}{11} a^{2} + \frac{40}{11} a - \frac{31}{22} \),  \( \frac{16}{11} a^{19} - \frac{7}{22} a^{18} + \frac{221}{22} a^{17} - \frac{24}{11} a^{16} + \frac{663}{22} a^{15} - \frac{72}{11} a^{14} + \frac{105}{2} a^{13} - \frac{23}{2} a^{12} + \frac{1437}{22} a^{11} - \frac{325}{22} a^{10} + 64 a^{9} - \frac{31}{2} a^{8} + \frac{91}{2} a^{7} - \frac{25}{2} a^{6} + \frac{246}{11} a^{5} - \frac{153}{22} a^{4} + \frac{75}{11} a^{3} - \frac{61}{22} a^{2} + \frac{13}{11} a - \frac{27}{22} \),  \( \frac{7}{22} a^{19} - \frac{29}{22} a^{18} + \frac{24}{11} a^{17} - \frac{101}{11} a^{16} + \frac{155}{22} a^{15} - \frac{617}{22} a^{14} + \frac{29}{2} a^{13} - \frac{101}{2} a^{12} + \frac{245}{11} a^{11} - \frac{1447}{22} a^{10} + 26 a^{9} - \frac{135}{2} a^{8} + \frac{47}{2} a^{7} - 51 a^{6} + \frac{351}{22} a^{5} - \frac{302}{11} a^{4} + \frac{80}{11} a^{3} - \frac{113}{11} a^{2} + \frac{30}{11} a - \frac{49}{22} \),  \( \frac{39}{22} a^{19} + \frac{1}{11} a^{18} + \frac{129}{11} a^{17} + \frac{10}{11} a^{16} + \frac{376}{11} a^{15} + \frac{71}{22} a^{14} + 59 a^{13} + \frac{11}{2} a^{12} + \frac{1641}{22} a^{11} + \frac{107}{22} a^{10} + \frac{147}{2} a^{9} + \frac{5}{2} a^{8} + \frac{107}{2} a^{7} - a^{6} + \frac{317}{11} a^{5} - \frac{93}{22} a^{4} + \frac{111}{11} a^{3} - \frac{40}{11} a^{2} + \frac{32}{11} a - \frac{15}{11} \),  \( \frac{23}{22} a^{19} - \frac{43}{22} a^{18} + \frac{153}{22} a^{17} - \frac{287}{22} a^{16} + \frac{224}{11} a^{15} - \frac{839}{22} a^{14} + \frac{71}{2} a^{13} - 66 a^{12} + \frac{1005}{22} a^{11} - \frac{1855}{22} a^{10} + 46 a^{9} - 85 a^{8} + 34 a^{7} - \frac{125}{2} a^{6} + \frac{205}{11} a^{5} - \frac{378}{11} a^{4} + \frac{125}{22} a^{3} - \frac{271}{22} a^{2} + \frac{29}{22} a - \frac{35}{11} \)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 99.8204300191 \)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

20T853:

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A solvable group of order 163840
The 280 conjugacy class representatives for t20n853 are not computed
Character table for t20n853 is not computed

Intermediate fields

5.1.2209.1, 10.2.941778433.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
2.10.10.5$x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
$47$47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
47.8.4.1$x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$193$193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.4.2.1$x^{4} + 1737 x^{2} + 931225$$2$$2$$2$$V_4$$[\ ]_{2}^{2}$
193.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
193.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$