Properties

 Label 2.2.145.1 Degree $2$ Signature $[2, 0]$ Discriminant $5\cdot 29$ Root discriminant $12.04$ Ramified primes $5, 29$ Class number $4$ Class group $[4]$ Galois Group $C_2$ (as 2T1)

Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-36, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 36)
gp: K = bnfinit(x^2 - x - 36, 1)

Normalizeddefining polynomial

$$x^{2}$$ $$\mathstrut -\mathstrut x$$ $$\mathstrut -\mathstrut 36$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

 Degree: $2$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[2, 0]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$145=5\cdot 29$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $12.04$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $5, 29$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is Galois and abelian over $\Q$. Conductor: $$145=5\cdot 29$$ Dirichlet character group: $\lbrace$$\chi_{145}(1,·), \chi_{145}(144,·)$$\rbrace$ This is not a CM field.

Integral basis (with respect to field generator $$a$$)

$1$, $a$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Multiplicative Abelian group isomorphic to C4, order $4$

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $1$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental unit: $$2 a + 11$$ magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$3.1797854377$$ magma: Regulator(K); sage: K.regulator() gp: K.reg

Galois group

$C_2$ (as 2T1):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A cyclic group of order 2 The 2 conjugacy class representatives for $C_2$ Character table for $C_2$

Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ${\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }$ R ${\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2} 2929.2.1.1x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.5_29.2t1.1c1$1$ $5 \cdot 29$ $x^{2} - x - 36$ $C_2$ (as 2T1) $1$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.