\\ Pari/GP code for working with number field 19.9.1598194952468587114325789491156.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^19 - 3*y^18 - 8*y^17 + 30*y^16 + 16*y^15 - 115*y^14 + 31*y^13 + 208*y^12 - 175*y^11 - 165*y^10 + 280*y^9 + 5*y^8 - 206*y^7 + 82*y^6 + 75*y^5 - 54*y^4 - 13*y^3 + 13*y^2 + y - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^19 - 3*x^18 - 8*x^17 + 30*x^16 + 16*x^15 - 115*x^14 + 31*x^13 + 208*x^12 - 175*x^11 - 165*x^10 + 280*x^9 + 5*x^8 - 206*x^7 + 82*x^6 + 75*x^5 - 54*x^4 - 13*x^3 + 13*x^2 + x - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])