# Properties

 Label 19.9.15981949524...1156.1 Degree $19$ Signature $[9, 5]$ Discriminant $-\,2^{2}\cdot 937\cdot 971\cdot 4676220259\cdot 93910895860973$ Root discriminant $38.87$ Ramified primes $2, 937, 971, 4676220259, 93910895860973$ Class number $1$ (GRH) Class group Trivial (GRH) Galois Group $S_{19}$ (as 19T8)

# Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 13, -13, -54, 75, 82, -206, 5, 280, -165, -175, 208, 31, -115, 16, 30, -8, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^19 - 3*x^18 - 8*x^17 + 30*x^16 + 16*x^15 - 115*x^14 + 31*x^13 + 208*x^12 - 175*x^11 - 165*x^10 + 280*x^9 + 5*x^8 - 206*x^7 + 82*x^6 + 75*x^5 - 54*x^4 - 13*x^3 + 13*x^2 + x - 1)
gp: K = bnfinit(x^19 - 3*x^18 - 8*x^17 + 30*x^16 + 16*x^15 - 115*x^14 + 31*x^13 + 208*x^12 - 175*x^11 - 165*x^10 + 280*x^9 + 5*x^8 - 206*x^7 + 82*x^6 + 75*x^5 - 54*x^4 - 13*x^3 + 13*x^2 + x - 1, 1)

## Normalizeddefining polynomial

$$x^{19}$$ $$\mathstrut -\mathstrut 3 x^{18}$$ $$\mathstrut -\mathstrut 8 x^{17}$$ $$\mathstrut +\mathstrut 30 x^{16}$$ $$\mathstrut +\mathstrut 16 x^{15}$$ $$\mathstrut -\mathstrut 115 x^{14}$$ $$\mathstrut +\mathstrut 31 x^{13}$$ $$\mathstrut +\mathstrut 208 x^{12}$$ $$\mathstrut -\mathstrut 175 x^{11}$$ $$\mathstrut -\mathstrut 165 x^{10}$$ $$\mathstrut +\mathstrut 280 x^{9}$$ $$\mathstrut +\mathstrut 5 x^{8}$$ $$\mathstrut -\mathstrut 206 x^{7}$$ $$\mathstrut +\mathstrut 82 x^{6}$$ $$\mathstrut +\mathstrut 75 x^{5}$$ $$\mathstrut -\mathstrut 54 x^{4}$$ $$\mathstrut -\mathstrut 13 x^{3}$$ $$\mathstrut +\mathstrut 13 x^{2}$$ $$\mathstrut +\mathstrut x$$ $$\mathstrut -\mathstrut 1$$

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

## Invariants

 Degree: $19$ magma: Degree(K); sage: K.degree() gp: poldegree(K.pol) Signature: $[9, 5]$ magma: Signature(K); sage: K.signature() gp: K.sign Discriminant: $$-1598194952468587114325789491156=-\,2^{2}\cdot 937\cdot 971\cdot 4676220259\cdot 93910895860973$$ magma: Discriminant(K); sage: K.disc() gp: K.disc Root discriminant: $38.87$ magma: Abs(Discriminant(K))^(1/Degree(K)); sage: (K.disc().abs())^(1./K.degree()) gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 937, 971, 4676220259, 93910895860973$ magma: PrimeDivisors(Discriminant(K)); sage: K.disc().support() gp: factor(abs(K.disc))[,1]~ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

## Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

## Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
 Rank: $13$ magma: UnitRank(K); sage: UK.rank() gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); sage: UK.torsion_generator() gp: K.tu[2] Fundamental units: Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) magma: [K!f(g): g in Generators(UK)]; sage: UK.fundamental_units() gp: K.fu Regulator: $$222480440.47$$ (assuming GRH) magma: Regulator(K); sage: K.regulator() gp: K.reg

## Galois group

$S_{19}$ (as 19T8):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
 A non-solvable group of order 121645100408832000 The 490 conjugacy class representatives for $S_{19}$ are not computed Character table for $S_{19}$ is not computed

## Intermediate fields

 The extension is primitive: there are no intermediate fields between this field and $\Q$.

## Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.9.0.1}{9} }$ $19$ $17{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ $17{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.9.0.1}{9} }$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ $16{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
937Data not computed
971Data not computed
4676220259Data not computed
93910895860973Data not computed