Properties

Label 19.9.13881423796...8476.1
Degree $19$
Signature $[9, 5]$
Discriminant $-\,2^{2}\cdot 347035594916998174935485988579619$
Root discriminant $55.51$
Ramified primes $2, 347035594916998174935485988579619$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois Group $S_{19}$ (as 19T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, -7, 56, 17, -246, -50, 554, 162, -708, -274, 555, 234, -274, -104, 83, 23, -14, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^19 - 2*x^18 - 14*x^17 + 23*x^16 + 83*x^15 - 104*x^14 - 274*x^13 + 234*x^12 + 555*x^11 - 274*x^10 - 708*x^9 + 162*x^8 + 554*x^7 - 50*x^6 - 246*x^5 + 17*x^4 + 56*x^3 - 7*x^2 - 5*x + 1)
gp: K = bnfinit(x^19 - 2*x^18 - 14*x^17 + 23*x^16 + 83*x^15 - 104*x^14 - 274*x^13 + 234*x^12 + 555*x^11 - 274*x^10 - 708*x^9 + 162*x^8 + 554*x^7 - 50*x^6 - 246*x^5 + 17*x^4 + 56*x^3 - 7*x^2 - 5*x + 1, 1)

Normalized defining polynomial

\(x^{19} \) \(\mathstrut -\mathstrut 2 x^{18} \) \(\mathstrut -\mathstrut 14 x^{17} \) \(\mathstrut +\mathstrut 23 x^{16} \) \(\mathstrut +\mathstrut 83 x^{15} \) \(\mathstrut -\mathstrut 104 x^{14} \) \(\mathstrut -\mathstrut 274 x^{13} \) \(\mathstrut +\mathstrut 234 x^{12} \) \(\mathstrut +\mathstrut 555 x^{11} \) \(\mathstrut -\mathstrut 274 x^{10} \) \(\mathstrut -\mathstrut 708 x^{9} \) \(\mathstrut +\mathstrut 162 x^{8} \) \(\mathstrut +\mathstrut 554 x^{7} \) \(\mathstrut -\mathstrut 50 x^{6} \) \(\mathstrut -\mathstrut 246 x^{5} \) \(\mathstrut +\mathstrut 17 x^{4} \) \(\mathstrut +\mathstrut 56 x^{3} \) \(\mathstrut -\mathstrut 7 x^{2} \) \(\mathstrut -\mathstrut 5 x \) \(\mathstrut +\mathstrut 1 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol

Invariants

Degree:  $19$
magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
Signature:  $[9, 5]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-1388142379667992699741943954318476=-\,2^{2}\cdot 347035594916998174935485988579619\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $55.51$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 347035594916998174935485988579619$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $13$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 8259829376.29 \) (assuming GRH)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$S_{19}$ (as 19T8):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 121645100408832000
The 490 conjugacy class representatives for $S_{19}$ are not computed
Character table for $S_{19}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.9.0.1}{9} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ $19$ $18{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ $17{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ $17{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ $18{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.13.0.1}{13} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ $18{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.14.0.1$x^{14} - x^{5} - x^{3} - x + 1$$1$$14$$0$$C_{14}$$[\ ]^{14}$
347035594916998174935485988579619Data not computed