Properties

Label 19.3.787...824.1
Degree $19$
Signature $[3, 8]$
Discriminant $7.878\times 10^{27}$
Root discriminant \(29.39\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{19}$ (as 19T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1)
 
gp: K = bnfinit(y^19 - 2*y^18 + 7*y^16 - 10*y^15 - y^14 + 19*y^13 - 19*y^12 - 9*y^11 + 33*y^10 - 19*y^9 - 20*y^8 + 33*y^7 - 9*y^6 - 18*y^5 + 17*y^4 - 3*y^3 - 5*y^2 + 4*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1)
 

\( x^{19} - 2 x^{18} + 7 x^{16} - 10 x^{15} - x^{14} + 19 x^{13} - 19 x^{12} - 9 x^{11} + 33 x^{10} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $19$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(7878347336355332175700013824\) \(\medspace = 2^{8}\cdot 317\cdot 25373\cdot 137363\cdot 27854432176313\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.39\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}317^{1/2}25373^{1/2}137363^{1/2}27854432176313^{1/2}\approx 13978832686367.559$
Ramified primes:   \(2\), \(317\), \(25373\), \(137363\), \(27854432176313\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{30774\!\cdots\!28179}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5}a^{18}+\frac{1}{5}a^{17}-\frac{2}{5}a^{16}+\frac{1}{5}a^{15}-\frac{2}{5}a^{14}-\frac{2}{5}a^{13}-\frac{2}{5}a^{12}+\frac{1}{5}a^{10}+\frac{1}{5}a^{9}-\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{2}{5}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $a^{17}-a^{16}-2a^{15}+6a^{14}-2a^{13}-9a^{12}+12a^{11}+2a^{10}-19a^{9}+12a^{8}+12a^{7}-20a^{6}+a^{5}+12a^{4}-7a^{3}-2a^{2}+2a-1$, $a^{17}-2a^{16}+6a^{14}-8a^{13}-a^{12}+13a^{11}-11a^{10}-8a^{9}+20a^{8}-8a^{7}-12a^{6}+13a^{5}-a^{4}-6a^{3}+4a^{2}-2a+1$, $\frac{1}{5}a^{18}+\frac{1}{5}a^{17}-\frac{7}{5}a^{16}+\frac{11}{5}a^{15}+\frac{3}{5}a^{14}-\frac{27}{5}a^{13}+\frac{33}{5}a^{12}-\frac{39}{5}a^{10}+\frac{31}{5}a^{9}+\frac{19}{5}a^{8}-\frac{53}{5}a^{7}+\frac{29}{5}a^{6}+\frac{8}{5}a^{5}-\frac{29}{5}a^{4}+4a^{3}-\frac{8}{5}a^{2}-\frac{4}{5}a+\frac{2}{5}$, $\frac{22}{5}a^{18}-\frac{33}{5}a^{17}-\frac{9}{5}a^{16}+\frac{132}{5}a^{15}-\frac{144}{5}a^{14}-\frac{54}{5}a^{13}+\frac{306}{5}a^{12}-44a^{11}-\frac{223}{5}a^{10}+\frac{457}{5}a^{9}-\frac{152}{5}a^{8}-\frac{356}{5}a^{7}+\frac{353}{5}a^{6}-\frac{14}{5}a^{5}-\frac{243}{5}a^{4}+23a^{3}-\frac{16}{5}a^{2}-\frac{43}{5}a+\frac{9}{5}$, $\frac{9}{5}a^{18}-\frac{11}{5}a^{17}-\frac{8}{5}a^{16}+\frac{44}{5}a^{15}-\frac{28}{5}a^{14}-\frac{38}{5}a^{13}+\frac{62}{5}a^{12}+3a^{11}-\frac{101}{5}a^{10}+\frac{29}{5}a^{9}+\frac{96}{5}a^{8}-\frac{77}{5}a^{7}-\frac{89}{5}a^{6}+\frac{97}{5}a^{5}+\frac{49}{5}a^{4}-25a^{3}+\frac{8}{5}a^{2}+\frac{59}{5}a-\frac{22}{5}$, $\frac{4}{5}a^{18}-\frac{6}{5}a^{17}-\frac{3}{5}a^{16}+\frac{24}{5}a^{15}-\frac{23}{5}a^{14}-\frac{13}{5}a^{13}+\frac{47}{5}a^{12}-5a^{11}-\frac{36}{5}a^{10}+\frac{44}{5}a^{9}+\frac{11}{5}a^{8}-\frac{47}{5}a^{7}-\frac{4}{5}a^{6}+\frac{37}{5}a^{5}-\frac{16}{5}a^{4}-6a^{3}+\frac{13}{5}a^{2}+\frac{9}{5}a-\frac{7}{5}$, $\frac{11}{5}a^{18}+\frac{1}{5}a^{17}-\frac{17}{5}a^{16}+\frac{41}{5}a^{15}+\frac{13}{5}a^{14}-\frac{67}{5}a^{13}+\frac{48}{5}a^{12}+9a^{11}-\frac{134}{5}a^{10}-\frac{4}{5}a^{9}+\frac{84}{5}a^{8}-\frac{98}{5}a^{7}-\frac{46}{5}a^{6}+\frac{73}{5}a^{5}-\frac{4}{5}a^{4}-2a^{3}+\frac{17}{5}a^{2}+\frac{1}{5}a-\frac{3}{5}$, $2a^{18}-4a^{17}+14a^{15}-21a^{14}-a^{13}+38a^{12}-41a^{11}-15a^{10}+65a^{9}-40a^{8}-38a^{7}+68a^{6}-20a^{5}-33a^{4}+32a^{3}-4a^{2}-7a+6$, $\frac{16}{5}a^{18}-\frac{39}{5}a^{17}+\frac{23}{5}a^{16}+\frac{91}{5}a^{15}-\frac{192}{5}a^{14}+\frac{93}{5}a^{13}+\frac{208}{5}a^{12}-71a^{11}+\frac{56}{5}a^{10}+\frac{396}{5}a^{9}-\frac{431}{5}a^{8}-\frac{43}{5}a^{7}+\frac{394}{5}a^{6}-\frac{277}{5}a^{5}-\frac{64}{5}a^{4}+35a^{3}-\frac{118}{5}a^{2}+\frac{26}{5}a+\frac{2}{5}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6223827.226 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{8}\cdot 6223827.226 \cdot 1}{2\cdot\sqrt{7878347336355332175700013824}}\cr\approx \mathstrut & 0.6813008086 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^19 - 2*x^18 + 7*x^16 - 10*x^15 - x^14 + 19*x^13 - 19*x^12 - 9*x^11 + 33*x^10 - 19*x^9 - 20*x^8 + 33*x^7 - 9*x^6 - 18*x^5 + 17*x^4 - 3*x^3 - 5*x^2 + 4*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{19}$ (as 19T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 121645100408832000
The 490 conjugacy class representatives for $S_{19}$ are not computed
Character table for $S_{19}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.7.0.1}{7} }^{2}{,}\,{\href{/padicField/3.5.0.1}{5} }$ $17{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ $18{,}\,{\href{/padicField/7.1.0.1}{1} }$ $17{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $15{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.7.0.1}{7} }$ $18{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.13.0.1}{13} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.9.0.1}{9} }$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.5.0.1}{5} }$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ $15{,}\,{\href{/padicField/47.4.0.1}{4} }$ $17{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.13.0.1}{13} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.0.1$x^{4} + x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.6.8.1$x^{6} + 2 x^{3} + 2$$6$$1$$8$$D_{6}$$[2]_{3}^{2}$
2.9.0.1$x^{9} + x^{4} + 1$$1$$9$$0$$C_9$$[\ ]^{9}$
\(317\) Copy content Toggle raw display $\Q_{317}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
\(25373\) Copy content Toggle raw display $\Q_{25373}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
\(137363\) Copy content Toggle raw display $\Q_{137363}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{137363}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $10$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(27854432176313\) Copy content Toggle raw display $\Q_{27854432176313}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$