Label 19.1.60114624060...3424.1
Degree $19$
Signature $[1, 9]$
Discriminant $-\,2^{18}\cdot 46553428447\cdot 49259334849493$
Root discriminant $36.92$
Ramified primes $2, 46553428447, 49259334849493$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois Group $S_{19}$ (as 19T8)

Related objects


Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^19 + 8*x - 8)
gp: K = bnfinit(x^19 + 8*x - 8, 1)

Normalized defining polynomial

\(x^{19} \) \(\mathstrut +\mathstrut 8 x \) \(\mathstrut -\mathstrut 8 \)

magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol


Degree:  $19$
magma: Degree(K);
gp: poldegree(K.pol)
Signature:  $[1, 9]$
magma: Signature(K);
sage: K.signature()
gp: K.sign
Discriminant:  \(-601146240601341529876691943424=-\,2^{18}\cdot 46553428447\cdot 49259334849493\)
magma: Discriminant(K);
sage: K.disc()
gp: K.disc
Root discriminant:  $36.92$
magma: Abs(Discriminant(K))^(1/Degree(K));
sage: (K.disc().abs())^(1./
gp: abs(K.disc)^(1/poldegree(K.pol))
Ramified primes:  $2, 46553428447, 49259334849493$
magma: PrimeDivisors(Discriminant(K));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{4} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{4} a^{18}$

magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
Rank:  $9$
magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
Regulator:  \( 28122221.8245 \) (assuming GRH)
magma: Regulator(K);
sage: K.regulator()
gp: K.reg

Galois group

$S_{19}$ (as 19T8):

magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
A non-solvable group of order 121645100408832000
The 490 conjugacy class representatives for $S_{19}$ are not computed
Character table for $S_{19}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16{,}\,{\href{/LocalNumberField/}{3} }$ ${\href{/LocalNumberField/}{10} }{,}\,{\href{/LocalNumberField/}{6} }{,}\,{\href{/LocalNumberField/}{3} }$ $15{,}\,{\href{/LocalNumberField/}{3} }{,}\,{\href{/LocalNumberField/}{1} }$ ${\href{/LocalNumberField/}{8} }{,}\,{\href{/LocalNumberField/}{6} }{,}\,{\href{/LocalNumberField/}{5} }$ ${\href{/LocalNumberField/}{11} }{,}\,{\href{/LocalNumberField/}{6} }{,}\,{\href{/LocalNumberField/}{2} }$ ${\href{/LocalNumberField/}{10} }{,}\,{\href{/LocalNumberField/}{6} }{,}\,{\href{/LocalNumberField/}{1} }^{3}$ ${\href{/LocalNumberField/}{3} }^{6}{,}\,{\href{/LocalNumberField/}{1} }$ ${\href{/LocalNumberField/}{10} }{,}\,{\href{/LocalNumberField/}{5} }{,}\,{\href{/LocalNumberField/}{2} }^{2}$ ${\href{/LocalNumberField/}{14} }{,}\,{\href{/LocalNumberField/}{2} }^{2}{,}\,{\href{/LocalNumberField/}{1} }$ ${\href{/LocalNumberField/}{12} }{,}\,{\href{/LocalNumberField/}{3} }{,}\,{\href{/LocalNumberField/}{2} }{,}\,{\href{/LocalNumberField/}{1} }^{2}$ ${\href{/LocalNumberField/}{14} }{,}\,{\href{/LocalNumberField/}{4} }{,}\,{\href{/LocalNumberField/}{1} }$ ${\href{/LocalNumberField/}{13} }{,}\,{\href{/LocalNumberField/}{6} }$ $15{,}\,{\href{/LocalNumberField/}{3} }{,}\,{\href{/LocalNumberField/}{1} }$ $16{,}\,{\href{/LocalNumberField/}{1} }^{3}$ ${\href{/LocalNumberField/}{13} }{,}\,{\href{/LocalNumberField/}{3} }{,}\,{\href{/LocalNumberField/}{2} }{,}\,{\href{/LocalNumberField/}{1} }$ ${\href{/LocalNumberField/}{7} }{,}\,{\href{/LocalNumberField/}{6} }{,}\,{\href{/LocalNumberField/}{3} }{,}\,{\href{/LocalNumberField/}{2} }{,}\,{\href{/LocalNumberField/}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
46553428447Data not computed
49259334849493Data not computed