\\ Pari/GP code for working with number field 19.1.467562425055097089773569879.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^19 - 5*y^18 + 10*y^17 - 5*y^16 + 9*y^15 - 42*y^14 + 51*y^13 - 6*y^12 - 23*y^11 + 4*y^10 - 29*y^9 + 112*y^8 - 63*y^7 - 147*y^6 + 183*y^5 + 15*y^4 - 77*y^3 - 17*y^2 + 37*y + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^19 - 5*x^18 + 10*x^17 - 5*x^16 + 9*x^15 - 42*x^14 + 51*x^13 - 6*x^12 - 23*x^11 + 4*x^10 - 29*x^9 + 112*x^8 - 63*x^7 - 147*x^6 + 183*x^5 + 15*x^4 - 77*x^3 - 17*x^2 + 37*x + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])